This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | ||
| ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | ||
| Assertion | ordtuni | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 3 | ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 4 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
| 5 | 1 4 | eqeltrid | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 ∈ V ) |
| 6 | unisng | ⊢ ( 𝑋 ∈ V → ∪ { 𝑋 } = 𝑋 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ∪ { 𝑋 } = 𝑋 ) |
| 8 | 7 | uneq1d | ⊢ ( 𝑅 ∈ 𝑉 → ( ∪ { 𝑋 } ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑋 ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
| 9 | ssrab2 | ⊢ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 | |
| 10 | 5 | adantr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ V ) |
| 11 | elpw2g | ⊢ ( 𝑋 ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) |
| 13 | 9 12 | mpbiri | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ) |
| 14 | 13 | fmpttd | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 15 | 14 | frnd | ⊢ ( 𝑅 ∈ 𝑉 → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 16 | 2 15 | eqsstrid | ⊢ ( 𝑅 ∈ 𝑉 → 𝐴 ⊆ 𝒫 𝑋 ) |
| 17 | ssrab2 | ⊢ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ⊆ 𝑋 | |
| 18 | elpw2g | ⊢ ( 𝑋 ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ⊆ 𝑋 ) ) | |
| 19 | 10 18 | syl | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ⊆ 𝑋 ) ) |
| 20 | 17 19 | mpbiri | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ∈ 𝒫 𝑋 ) |
| 21 | 20 | fmpttd | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 22 | 21 | frnd | ⊢ ( 𝑅 ∈ 𝑉 → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ⊆ 𝒫 𝑋 ) |
| 23 | 3 22 | eqsstrid | ⊢ ( 𝑅 ∈ 𝑉 → 𝐵 ⊆ 𝒫 𝑋 ) |
| 24 | 16 23 | unssd | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝑋 ) |
| 25 | sspwuni | ⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝑋 ↔ ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) | |
| 26 | 24 25 | sylib | ⊢ ( 𝑅 ∈ 𝑉 → ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
| 27 | ssequn2 | ⊢ ( ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ↔ ( 𝑋 ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝑋 ) | |
| 28 | 26 27 | sylib | ⊢ ( 𝑅 ∈ 𝑉 → ( 𝑋 ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝑋 ) |
| 29 | 8 28 | eqtr2d | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ( ∪ { 𝑋 } ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
| 30 | uniun | ⊢ ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) = ( ∪ { 𝑋 } ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) | |
| 31 | 29 30 | eqtr4di | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |