This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | ||
| ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | ||
| Assertion | ordtval | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtval.1 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | ordtval.2 | ⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 3 | ordtval.3 | ⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 4 | elex | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) | |
| 5 | dmeq | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → dom 𝑟 = 𝑋 ) |
| 7 | 6 | sneqd | ⊢ ( 𝑟 = 𝑅 → { dom 𝑟 } = { 𝑋 } ) |
| 8 | rnun | ⊢ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) = ( ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) | |
| 9 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑥 ↔ 𝑦 𝑅 𝑥 ) ) | |
| 10 | 9 | notbid | ⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑦 𝑟 𝑥 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 11 | 6 10 | rabeqbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 12 | 6 11 | mpteq12dv | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 13 | 12 | rneqd | ⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 14 | 13 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) = 𝐴 ) |
| 15 | breq | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) | |
| 16 | 15 | notbid | ⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑥 𝑟 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 17 | 6 16 | rabeqbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 18 | 6 17 | mpteq12dv | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 19 | 18 | rneqd | ⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 20 | 19 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) = 𝐵 ) |
| 21 | 14 20 | uneq12d | ⊢ ( 𝑟 = 𝑅 → ( ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) = ( 𝐴 ∪ 𝐵 ) ) |
| 22 | 8 21 | eqtrid | ⊢ ( 𝑟 = 𝑅 → ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) = ( 𝐴 ∪ 𝐵 ) ) |
| 23 | 7 22 | uneq12d | ⊢ ( 𝑟 = 𝑅 → ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) = ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) = ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( 𝑟 = 𝑅 → ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 26 | df-ordt | ⊢ ordTop = ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) | |
| 27 | fvex | ⊢ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ∈ V | |
| 28 | 25 26 27 | fvmpt | ⊢ ( 𝑅 ∈ V → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
| 29 | 4 28 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |