This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| rabeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | rabeqbidv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | rabeqbidv.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 | 1 3 | rabeqbidva | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜒 } ) |