This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtcnv | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( ordTop ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | psrn | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅 ) |
| 3 | 2 | eqcomd | ⊢ ( 𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅 ) |
| 4 | 3 | sneqd | ⊢ ( 𝑅 ∈ PosetRel → { ran 𝑅 } = { dom 𝑅 } ) |
| 5 | vex | ⊢ 𝑦 ∈ V | |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 5 6 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 8 | 7 | a1i | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 9 | 8 | notbid | ⊢ ( 𝑅 ∈ PosetRel → ( ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 10 | 3 9 | rabeqbidv | ⊢ ( 𝑅 ∈ PosetRel → { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } = { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
| 11 | 3 10 | mpteq12dv | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 12 | 11 | rneqd | ⊢ ( 𝑅 ∈ PosetRel → ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
| 13 | 6 5 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 14 | 13 | a1i | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
| 15 | 14 | notbid | ⊢ ( 𝑅 ∈ PosetRel → ( ¬ 𝑥 ◡ 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
| 16 | 3 15 | rabeqbidv | ⊢ ( 𝑅 ∈ PosetRel → { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } = { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 17 | 3 16 | mpteq12dv | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) = ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 18 | 17 | rneqd | ⊢ ( 𝑅 ∈ PosetRel → ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 19 | 12 18 | uneq12d | ⊢ ( 𝑅 ∈ PosetRel → ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) = ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) |
| 20 | uncom | ⊢ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) = ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) | |
| 21 | 19 20 | eqtrdi | ⊢ ( 𝑅 ∈ PosetRel → ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) = ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) |
| 22 | 4 21 | uneq12d | ⊢ ( 𝑅 ∈ PosetRel → ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) = ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( 𝑅 ∈ PosetRel → ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) = ( fi ‘ ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 24 | 23 | fveq2d | ⊢ ( 𝑅 ∈ PosetRel → ( topGen ‘ ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 25 | cnvps | ⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) | |
| 26 | df-rn | ⊢ ran 𝑅 = dom ◡ 𝑅 | |
| 27 | eqid | ⊢ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) | |
| 28 | eqid | ⊢ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) | |
| 29 | 26 27 28 | ordtval | ⊢ ( ◡ 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) ) ) |
| 30 | 25 29 | syl | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) ) ) |
| 31 | eqid | ⊢ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 32 | eqid | ⊢ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 33 | 1 31 32 | ordtval | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 34 | 24 30 33 | 3eqtr4d | ⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( ordTop ‘ 𝑅 ) ) |