This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| Assertion | ordttopon | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordttopon.3 | ⊢ 𝑋 = dom 𝑅 | |
| 2 | eqid | ⊢ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) | |
| 3 | eqid | ⊢ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) | |
| 4 | 1 2 3 | ordtval | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 5 | fibas | ⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ∈ TopBases | |
| 6 | tgtopon | ⊢ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ∈ TopBases → ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 8 | 4 7 | eqeltrdi | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 9 | 1 2 3 | ordtuni | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) |
| 10 | dmexg | ⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) | |
| 11 | 1 10 | eqeltrid | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 ∈ V ) |
| 12 | 9 11 | eqeltrrd | ⊢ ( 𝑅 ∈ 𝑉 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ) |
| 13 | uniexb | ⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ) | |
| 14 | 12 13 | sylibr | ⊢ ( 𝑅 ∈ 𝑉 → ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V ) |
| 15 | fiuni | ⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ∈ V → ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) = ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 17 | 9 16 | eqtrd | ⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝑅 ∈ 𝑉 → ( TopOn ‘ 𝑋 ) = ( TopOn ‘ ∪ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
| 19 | 8 18 | eleqtrrd | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ 𝑋 ) ) |