This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of restricted class abstractions. Deduction form of rabeq . (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabeqdv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| Assertion | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqdv.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | rabeq | ⊢ ( 𝐴 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) | |
| 3 | 1 2 | syl | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∈ 𝐵 ∣ 𝜓 } ) |