This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a toset is a toset. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvtsr | ⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsrps | ⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) | |
| 2 | cnvps | ⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ PosetRel ) |
| 4 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 5 | 4 | istsr | ⊢ ( 𝑅 ∈ TosetRel ↔ ( 𝑅 ∈ PosetRel ∧ ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝑅 ∈ TosetRel → ( dom 𝑅 × dom 𝑅 ) ⊆ ( 𝑅 ∪ ◡ 𝑅 ) ) |
| 7 | 4 | psrn | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅 ) |
| 8 | 1 7 | syl | ⊢ ( 𝑅 ∈ TosetRel → dom 𝑅 = ran 𝑅 ) |
| 9 | 8 | sqxpeqd | ⊢ ( 𝑅 ∈ TosetRel → ( dom 𝑅 × dom 𝑅 ) = ( ran 𝑅 × ran 𝑅 ) ) |
| 10 | psrel | ⊢ ( 𝑅 ∈ PosetRel → Rel 𝑅 ) | |
| 11 | 1 10 | syl | ⊢ ( 𝑅 ∈ TosetRel → Rel 𝑅 ) |
| 12 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝑅 ∈ TosetRel → ◡ ◡ 𝑅 = 𝑅 ) |
| 14 | 13 | uneq2d | ⊢ ( 𝑅 ∈ TosetRel → ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) = ( ◡ 𝑅 ∪ 𝑅 ) ) |
| 15 | uncom | ⊢ ( ◡ 𝑅 ∪ 𝑅 ) = ( 𝑅 ∪ ◡ 𝑅 ) | |
| 16 | 14 15 | eqtr2di | ⊢ ( 𝑅 ∈ TosetRel → ( 𝑅 ∪ ◡ 𝑅 ) = ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) ) |
| 17 | 6 9 16 | 3sstr3d | ⊢ ( 𝑅 ∈ TosetRel → ( ran 𝑅 × ran 𝑅 ) ⊆ ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) ) |
| 18 | df-rn | ⊢ ran 𝑅 = dom ◡ 𝑅 | |
| 19 | 18 | istsr | ⊢ ( ◡ 𝑅 ∈ TosetRel ↔ ( ◡ 𝑅 ∈ PosetRel ∧ ( ran 𝑅 × ran 𝑅 ) ⊆ ( ◡ 𝑅 ∪ ◡ ◡ 𝑅 ) ) ) |
| 20 | 3 17 19 | sylanbrc | ⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) |