This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psss | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 | ⊢ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑅 | |
| 2 | psrel | ⊢ ( 𝑅 ∈ PosetRel → Rel 𝑅 ) | |
| 3 | relss | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑅 → ( Rel 𝑅 → Rel ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 4 | 1 2 3 | mpsyl | ⊢ ( 𝑅 ∈ PosetRel → Rel ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 5 | pstr2 | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) | |
| 6 | trinxp | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 8 | uniin | ⊢ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( ∪ 𝑅 ∩ ∪ ( 𝐴 × 𝐴 ) ) | |
| 9 | 8 | unissi | ⊢ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ∪ ( ∪ 𝑅 ∩ ∪ ( 𝐴 × 𝐴 ) ) |
| 10 | uniin | ⊢ ∪ ( ∪ 𝑅 ∩ ∪ ( 𝐴 × 𝐴 ) ) ⊆ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) | |
| 11 | 9 10 | sstri | ⊢ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) |
| 12 | elin | ⊢ ( 𝑥 ∈ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ ∪ ∪ ( 𝐴 × 𝐴 ) ) ) | |
| 13 | unixpid | ⊢ ∪ ∪ ( 𝐴 × 𝐴 ) = 𝐴 | |
| 14 | 13 | eleq2i | ⊢ ( 𝑥 ∈ ∪ ∪ ( 𝐴 × 𝐴 ) ↔ 𝑥 ∈ 𝐴 ) |
| 15 | simprr | ⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 16 | psdmrn | ⊢ ( 𝑅 ∈ PosetRel → ( dom 𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅 ) ) | |
| 17 | 16 | simpld | ⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ∪ ∪ 𝑅 ) |
| 18 | 17 | eleq2d | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ ∪ ∪ 𝑅 ) ) |
| 19 | 18 | biimpar | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅 ) → 𝑥 ∈ dom 𝑅 ) |
| 20 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 21 | 20 | psref | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅 ) → 𝑥 𝑅 𝑥 ) |
| 22 | 19 21 | syldan | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅 ) → 𝑥 𝑅 𝑥 ) |
| 23 | 22 | adantrr | ⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 𝑅 𝑥 ) |
| 24 | brinxp2 | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝑥 ) ) | |
| 25 | 15 15 23 24 | syl21anbrc | ⊢ ( ( 𝑅 ∈ PosetRel ∧ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ 𝐴 ) ) → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) |
| 26 | 25 | expr | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 27 | 14 26 | biimtrid | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅 ) → ( 𝑥 ∈ ∪ ∪ ( 𝐴 × 𝐴 ) → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 28 | 27 | expimpd | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ ∪ ∪ ( 𝐴 × 𝐴 ) ) → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 29 | 12 28 | biimtrid | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) → 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) |
| 30 | 29 | ralrimiv | ⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∈ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) |
| 31 | ssralv | ⊢ ( ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ⊆ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) → ( ∀ 𝑥 ∈ ( ∪ ∪ 𝑅 ∩ ∪ ∪ ( 𝐴 × 𝐴 ) ) 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 → ∀ 𝑥 ∈ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) ) | |
| 32 | 11 30 31 | mpsyl | ⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∈ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) |
| 33 | 1 | ssbri | ⊢ ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 → 𝑥 𝑅 𝑦 ) |
| 34 | 1 | ssbri | ⊢ ( 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 → 𝑦 𝑅 𝑥 ) |
| 35 | psasym | ⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) | |
| 36 | 35 | 3expib | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 37 | 33 34 36 | syl2ani | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 38 | 37 | alrimivv | ⊢ ( 𝑅 ∈ PosetRel → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ) |
| 39 | asymref2 | ⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∩ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( I ↾ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑥 ∈ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑦 ∧ 𝑦 ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) 𝑥 ) → 𝑥 = 𝑦 ) ) ) | |
| 40 | 32 38 39 | sylanbrc | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∩ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( I ↾ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 41 | inex1g | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) | |
| 42 | isps | ⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ↔ ( Rel ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∩ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( I ↾ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) ) | |
| 43 | 41 42 | syl | ⊢ ( 𝑅 ∈ PosetRel → ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ↔ ( Rel ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∧ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∩ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( I ↾ ∪ ∪ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) ) |
| 44 | 4 7 40 43 | mpbir3and | ⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |