This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Orbit-Stabilizer theorem. The mapping F is a bijection from the cosets of the stabilizer subgroup of A to the orbit of A . (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | ||
| orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | ||
| orbsta.f | ⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | ||
| orbsta.o | ⊢ 𝑂 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | ||
| Assertion | orbsta | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | |
| 3 | orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| 4 | orbsta.f | ⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | |
| 5 | orbsta.o | ⊢ 𝑂 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 6 | 1 2 3 4 | orbstafun | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |
| 7 | simpr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐴 ∈ 𝑌 ) | |
| 8 | 7 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
| 9 | 1 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 10 | 9 | adantr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 11 | 10 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 12 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → 𝑘 ∈ 𝑋 ) | |
| 13 | 11 12 8 | fovcdmd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ 𝑌 ) |
| 14 | eqid | ⊢ ( 𝑘 ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) | |
| 15 | oveq1 | ⊢ ( ℎ = 𝑘 → ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( ℎ = 𝑘 → ( ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ↔ ( 𝑘 ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) ) |
| 17 | 16 | rspcev | ⊢ ( ( 𝑘 ∈ 𝑋 ∧ ( 𝑘 ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) |
| 18 | 12 14 17 | sylancl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) |
| 19 | 5 | gaorb | ⊢ ( 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ↔ ( 𝐴 ∈ 𝑌 ∧ ( 𝑘 ⊕ 𝐴 ) ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = ( 𝑘 ⊕ 𝐴 ) ) ) |
| 20 | 8 13 18 19 | syl3anbrc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ) |
| 21 | ovex | ⊢ ( 𝑘 ⊕ 𝐴 ) ∈ V | |
| 22 | elecg | ⊢ ( ( ( 𝑘 ⊕ 𝐴 ) ∈ V ∧ 𝐴 ∈ 𝑌 ) → ( ( 𝑘 ⊕ 𝐴 ) ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ) ) | |
| 23 | 21 8 22 | sylancr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( ( 𝑘 ⊕ 𝐴 ) ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ( 𝑘 ⊕ 𝐴 ) ) ) |
| 24 | 20 23 | mpbird | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ [ 𝐴 ] 𝑂 ) |
| 25 | 1 2 | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 26 | 1 3 | eqger | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 27 | 25 26 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∼ Er 𝑋 ) |
| 28 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 29 | 28 | a1i | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑋 ∈ V ) |
| 30 | 4 24 27 29 | qliftf | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( Fun 𝐹 ↔ 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ) ) |
| 31 | 6 30 | mpbid | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ) |
| 32 | eqid | ⊢ ( 𝑋 / ∼ ) = ( 𝑋 / ∼ ) | |
| 33 | fveqeq2 | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) | |
| 34 | eqeq1 | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( [ 𝑧 ] ∼ = 𝑏 ↔ 𝑎 = 𝑏 ) ) | |
| 35 | 33 34 | imbi12d | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ↔ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( [ 𝑧 ] ∼ = 𝑎 → ( ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ↔ ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 37 | fveq2 | ⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( 𝐹 ‘ [ 𝑤 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 38 | 37 | eqeq2d | ⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ↔ ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 39 | eqeq2 | ⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ↔ [ 𝑧 ] ∼ = 𝑏 ) ) | |
| 40 | 38 39 | imbi12d | ⊢ ( [ 𝑤 ] ∼ = 𝑏 → ( ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) → [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ↔ ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ) ) |
| 41 | 1 2 3 4 | orbstaval | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝑧 ⊕ 𝐴 ) ) |
| 42 | 41 | adantrr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝑧 ⊕ 𝐴 ) ) |
| 43 | 1 2 3 4 | orbstaval | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝑤 ] ∼ ) = ( 𝑤 ⊕ 𝐴 ) ) |
| 44 | 43 | adantrl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ [ 𝑤 ] ∼ ) = ( 𝑤 ⊕ 𝐴 ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ↔ ( 𝑧 ⊕ 𝐴 ) = ( 𝑤 ⊕ 𝐴 ) ) ) |
| 46 | 1 2 3 | gastacos | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 ∼ 𝑤 ↔ ( 𝑧 ⊕ 𝐴 ) = ( 𝑤 ⊕ 𝐴 ) ) ) |
| 47 | 27 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ∼ Er 𝑋 ) |
| 48 | simprl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 49 | 47 48 | erth | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑧 ∼ 𝑤 ↔ [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
| 50 | 45 46 49 | 3bitr2d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ↔ [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
| 51 | 50 | biimpd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) → [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
| 52 | 51 | anassrs | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) → [ 𝑧 ] ∼ = [ 𝑤 ] ∼ ) ) |
| 53 | 32 40 52 | ectocld | ⊢ ( ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑏 ∈ ( 𝑋 / ∼ ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ) |
| 54 | 53 | ralrimiva | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ 𝑏 ) → [ 𝑧 ] ∼ = 𝑏 ) ) |
| 55 | 32 36 54 | ectocld | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑎 ∈ ( 𝑋 / ∼ ) ) → ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 56 | 55 | ralrimiva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ 𝑎 ∈ ( 𝑋 / ∼ ) ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 57 | dff13 | ⊢ ( 𝐹 : ( 𝑋 / ∼ ) –1-1→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ∧ ∀ 𝑎 ∈ ( 𝑋 / ∼ ) ∀ 𝑏 ∈ ( 𝑋 / ∼ ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) | |
| 58 | 31 56 57 | sylanbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –1-1→ [ 𝐴 ] 𝑂 ) |
| 59 | vex | ⊢ ℎ ∈ V | |
| 60 | elecg | ⊢ ( ( ℎ ∈ V ∧ 𝐴 ∈ 𝑌 ) → ( ℎ ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ℎ ) ) | |
| 61 | 59 7 60 | sylancr | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ℎ ∈ [ 𝐴 ] 𝑂 ↔ 𝐴 𝑂 ℎ ) ) |
| 62 | 5 | gaorb | ⊢ ( 𝐴 𝑂 ℎ ↔ ( 𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) ) |
| 63 | 61 62 | bitrdi | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ℎ ∈ [ 𝐴 ] 𝑂 ↔ ( 𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) ) ) |
| 64 | 63 | biimpa | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ℎ ∈ [ 𝐴 ] 𝑂 ) → ( 𝐴 ∈ 𝑌 ∧ ℎ ∈ 𝑌 ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) ) |
| 65 | 64 | simp3d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ℎ ∈ [ 𝐴 ] 𝑂 ) → ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) |
| 66 | 3 | ovexi | ⊢ ∼ ∈ V |
| 67 | 66 | ecelqsi | ⊢ ( 𝑤 ∈ 𝑋 → [ 𝑤 ] ∼ ∈ ( 𝑋 / ∼ ) ) |
| 68 | 43 | eqcomd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ) |
| 69 | fveq2 | ⊢ ( 𝑧 = [ 𝑤 ] ∼ → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ) | |
| 70 | 69 | rspceeqv | ⊢ ( ( [ 𝑤 ] ∼ ∈ ( 𝑋 / ∼ ) ∧ ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ [ 𝑤 ] ∼ ) ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 71 | 67 68 70 | syl2an2 | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 72 | eqeq1 | ⊢ ( ( 𝑤 ⊕ 𝐴 ) = ℎ → ( ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ↔ ℎ = ( 𝐹 ‘ 𝑧 ) ) ) | |
| 73 | 72 | rexbidv | ⊢ ( ( 𝑤 ⊕ 𝐴 ) = ℎ → ( ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ( 𝑤 ⊕ 𝐴 ) = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
| 74 | 71 73 | syl5ibcom | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑤 ⊕ 𝐴 ) = ℎ → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
| 75 | 74 | rexlimdva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) |
| 76 | 75 | imp | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ∃ 𝑤 ∈ 𝑋 ( 𝑤 ⊕ 𝐴 ) = ℎ ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) |
| 77 | 65 76 | syldan | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ℎ ∈ [ 𝐴 ] 𝑂 ) → ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) |
| 78 | 77 | ralrimiva | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∀ ℎ ∈ [ 𝐴 ] 𝑂 ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) |
| 79 | dffo3 | ⊢ ( 𝐹 : ( 𝑋 / ∼ ) –onto→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ∼ ) ⟶ [ 𝐴 ] 𝑂 ∧ ∀ ℎ ∈ [ 𝐴 ] 𝑂 ∃ 𝑧 ∈ ( 𝑋 / ∼ ) ℎ = ( 𝐹 ‘ 𝑧 ) ) ) | |
| 80 | 31 78 79 | sylanbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –onto→ [ 𝐴 ] 𝑂 ) |
| 81 | df-f1o | ⊢ ( 𝐹 : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ↔ ( 𝐹 : ( 𝑋 / ∼ ) –1-1→ [ 𝐴 ] 𝑂 ∧ 𝐹 : ( 𝑋 / ∼ ) –onto→ [ 𝐴 ] 𝑂 ) ) | |
| 82 | 58 80 81 | sylanbrc | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐹 : ( 𝑋 / ∼ ) –1-1-onto→ [ 𝐴 ] 𝑂 ) |