This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence and uniqueness for the function of orbsta . (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | ||
| orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | ||
| orbsta.f | ⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | ||
| Assertion | orbstafun | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | |
| 3 | orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| 4 | orbsta.f | ⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | |
| 5 | ovexd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ V ) | |
| 6 | 1 2 | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 | 1 3 | eqger | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 8 | 6 7 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∼ Er 𝑋 ) |
| 9 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 10 | 9 | a1i | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑋 ∈ V ) |
| 11 | oveq1 | ⊢ ( 𝑘 = ℎ → ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) | |
| 12 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → 𝑘 ∼ ℎ ) | |
| 13 | subgrcl | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 14 | 1 | subgss | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
| 15 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 17 | 1 15 16 3 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋 ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) ) |
| 18 | 13 14 17 | syl2anc | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) ) |
| 19 | 6 18 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) ) |
| 20 | 19 | biimpa | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑘 ) ( +g ‘ 𝐺 ) ℎ ) ∈ 𝐻 ) ) |
| 21 | 20 | simp1d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → 𝑘 ∈ 𝑋 ) |
| 22 | 20 | simp2d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ℎ ∈ 𝑋 ) |
| 23 | 21 22 | jca | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ) ) |
| 24 | 1 2 3 | gastacos | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝑘 ∈ 𝑋 ∧ ℎ ∈ 𝑋 ) ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) ) |
| 25 | 23 24 | syldan | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ∼ ℎ ↔ ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) ) |
| 26 | 12 25 | mpbid | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∼ ℎ ) → ( 𝑘 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) |
| 27 | 4 5 8 10 11 26 | qliftfund | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |