This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaorb.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| Assertion | gaorb | ⊢ ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaorb.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } | |
| 2 | oveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑔 ⊕ 𝑥 ) = ( 𝑔 ⊕ 𝐴 ) ) | |
| 3 | eqeq12 | ⊢ ( ( ( 𝑔 ⊕ 𝑥 ) = ( 𝑔 ⊕ 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( ( 𝑔 ⊕ 𝑥 ) = 𝑦 ↔ ( 𝑔 ⊕ 𝐴 ) = 𝐵 ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑔 ⊕ 𝑥 ) = 𝑦 ↔ ( 𝑔 ⊕ 𝐴 ) = 𝐵 ) ) |
| 5 | 4 | rexbidv | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ↔ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝐴 ) = 𝐵 ) ) |
| 6 | oveq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 ⊕ 𝐴 ) = ( ℎ ⊕ 𝐴 ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( 𝑔 = ℎ → ( ( 𝑔 ⊕ 𝐴 ) = 𝐵 ↔ ( ℎ ⊕ 𝐴 ) = 𝐵 ) ) |
| 8 | 7 | cbvrexvw | ⊢ ( ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝐴 ) = 𝐵 ↔ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) |
| 9 | 5 8 | bitrdi | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ↔ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | 10 11 | prss | ⊢ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑌 ) |
| 13 | 12 | anbi1i | ⊢ ( ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) ↔ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) ) |
| 14 | 13 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑌 ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
| 15 | 1 14 | eqtr4i | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ∧ ∃ 𝑔 ∈ 𝑋 ( 𝑔 ⊕ 𝑥 ) = 𝑦 ) } |
| 16 | 9 15 | brab2a | ⊢ ( 𝐴 ∼ 𝐵 ↔ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) ) |
| 17 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) ↔ ( ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ) ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) ) | |
| 18 | 16 17 | bitr4i | ⊢ ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ ℎ ∈ 𝑋 ( ℎ ⊕ 𝐴 ) = 𝐵 ) ) |