This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Orbit-Stabilizer theorem. The mapping F is a bijection from the cosets of the stabilizer subgroup of A to the orbit of A . (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | |- X = ( Base ` G ) |
|
| gasta.2 | |- H = { u e. X | ( u .(+) A ) = A } |
||
| orbsta.r | |- .~ = ( G ~QG H ) |
||
| orbsta.f | |- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
||
| orbsta.o | |- O = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
||
| Assertion | orbsta | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> F : ( X /. .~ ) -1-1-onto-> [ A ] O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | |- X = ( Base ` G ) |
|
| 2 | gasta.2 | |- H = { u e. X | ( u .(+) A ) = A } |
|
| 3 | orbsta.r | |- .~ = ( G ~QG H ) |
|
| 4 | orbsta.f | |- F = ran ( k e. X |-> <. [ k ] .~ , ( k .(+) A ) >. ) |
|
| 5 | orbsta.o | |- O = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
|
| 6 | 1 2 3 4 | orbstafun | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> Fun F ) |
| 7 | simpr | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> A e. Y ) |
|
| 8 | 7 | adantr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> A e. Y ) |
| 9 | 1 | gaf | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) --> Y ) |
| 10 | 9 | adantr | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .(+) : ( X X. Y ) --> Y ) |
| 11 | 10 | adantr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> .(+) : ( X X. Y ) --> Y ) |
| 12 | simpr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> k e. X ) |
|
| 13 | 11 12 8 | fovcdmd | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. Y ) |
| 14 | eqid | |- ( k .(+) A ) = ( k .(+) A ) |
|
| 15 | oveq1 | |- ( h = k -> ( h .(+) A ) = ( k .(+) A ) ) |
|
| 16 | 15 | eqeq1d | |- ( h = k -> ( ( h .(+) A ) = ( k .(+) A ) <-> ( k .(+) A ) = ( k .(+) A ) ) ) |
| 17 | 16 | rspcev | |- ( ( k e. X /\ ( k .(+) A ) = ( k .(+) A ) ) -> E. h e. X ( h .(+) A ) = ( k .(+) A ) ) |
| 18 | 12 14 17 | sylancl | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> E. h e. X ( h .(+) A ) = ( k .(+) A ) ) |
| 19 | 5 | gaorb | |- ( A O ( k .(+) A ) <-> ( A e. Y /\ ( k .(+) A ) e. Y /\ E. h e. X ( h .(+) A ) = ( k .(+) A ) ) ) |
| 20 | 8 13 18 19 | syl3anbrc | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> A O ( k .(+) A ) ) |
| 21 | ovex | |- ( k .(+) A ) e. _V |
|
| 22 | elecg | |- ( ( ( k .(+) A ) e. _V /\ A e. Y ) -> ( ( k .(+) A ) e. [ A ] O <-> A O ( k .(+) A ) ) ) |
|
| 23 | 21 8 22 | sylancr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( ( k .(+) A ) e. [ A ] O <-> A O ( k .(+) A ) ) ) |
| 24 | 20 23 | mpbird | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ k e. X ) -> ( k .(+) A ) e. [ A ] O ) |
| 25 | 1 2 | gastacl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> H e. ( SubGrp ` G ) ) |
| 26 | 1 3 | eqger | |- ( H e. ( SubGrp ` G ) -> .~ Er X ) |
| 27 | 25 26 | syl | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> .~ Er X ) |
| 28 | 1 | fvexi | |- X e. _V |
| 29 | 28 | a1i | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> X e. _V ) |
| 30 | 4 24 27 29 | qliftf | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( Fun F <-> F : ( X /. .~ ) --> [ A ] O ) ) |
| 31 | 6 30 | mpbid | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> F : ( X /. .~ ) --> [ A ] O ) |
| 32 | eqid | |- ( X /. .~ ) = ( X /. .~ ) |
|
| 33 | fveqeq2 | |- ( [ z ] .~ = a -> ( ( F ` [ z ] .~ ) = ( F ` b ) <-> ( F ` a ) = ( F ` b ) ) ) |
|
| 34 | eqeq1 | |- ( [ z ] .~ = a -> ( [ z ] .~ = b <-> a = b ) ) |
|
| 35 | 33 34 | imbi12d | |- ( [ z ] .~ = a -> ( ( ( F ` [ z ] .~ ) = ( F ` b ) -> [ z ] .~ = b ) <-> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
| 36 | 35 | ralbidv | |- ( [ z ] .~ = a -> ( A. b e. ( X /. .~ ) ( ( F ` [ z ] .~ ) = ( F ` b ) -> [ z ] .~ = b ) <-> A. b e. ( X /. .~ ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
| 37 | fveq2 | |- ( [ w ] .~ = b -> ( F ` [ w ] .~ ) = ( F ` b ) ) |
|
| 38 | 37 | eqeq2d | |- ( [ w ] .~ = b -> ( ( F ` [ z ] .~ ) = ( F ` [ w ] .~ ) <-> ( F ` [ z ] .~ ) = ( F ` b ) ) ) |
| 39 | eqeq2 | |- ( [ w ] .~ = b -> ( [ z ] .~ = [ w ] .~ <-> [ z ] .~ = b ) ) |
|
| 40 | 38 39 | imbi12d | |- ( [ w ] .~ = b -> ( ( ( F ` [ z ] .~ ) = ( F ` [ w ] .~ ) -> [ z ] .~ = [ w ] .~ ) <-> ( ( F ` [ z ] .~ ) = ( F ` b ) -> [ z ] .~ = b ) ) ) |
| 41 | 1 2 3 4 | orbstaval | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ z e. X ) -> ( F ` [ z ] .~ ) = ( z .(+) A ) ) |
| 42 | 41 | adantrr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( F ` [ z ] .~ ) = ( z .(+) A ) ) |
| 43 | 1 2 3 4 | orbstaval | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ w e. X ) -> ( F ` [ w ] .~ ) = ( w .(+) A ) ) |
| 44 | 43 | adantrl | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( F ` [ w ] .~ ) = ( w .(+) A ) ) |
| 45 | 42 44 | eqeq12d | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( ( F ` [ z ] .~ ) = ( F ` [ w ] .~ ) <-> ( z .(+) A ) = ( w .(+) A ) ) ) |
| 46 | 1 2 3 | gastacos | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( z .~ w <-> ( z .(+) A ) = ( w .(+) A ) ) ) |
| 47 | 27 | adantr | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> .~ Er X ) |
| 48 | simprl | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> z e. X ) |
|
| 49 | 47 48 | erth | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( z .~ w <-> [ z ] .~ = [ w ] .~ ) ) |
| 50 | 45 46 49 | 3bitr2d | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( ( F ` [ z ] .~ ) = ( F ` [ w ] .~ ) <-> [ z ] .~ = [ w ] .~ ) ) |
| 51 | 50 | biimpd | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ ( z e. X /\ w e. X ) ) -> ( ( F ` [ z ] .~ ) = ( F ` [ w ] .~ ) -> [ z ] .~ = [ w ] .~ ) ) |
| 52 | 51 | anassrs | |- ( ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ z e. X ) /\ w e. X ) -> ( ( F ` [ z ] .~ ) = ( F ` [ w ] .~ ) -> [ z ] .~ = [ w ] .~ ) ) |
| 53 | 32 40 52 | ectocld | |- ( ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ z e. X ) /\ b e. ( X /. .~ ) ) -> ( ( F ` [ z ] .~ ) = ( F ` b ) -> [ z ] .~ = b ) ) |
| 54 | 53 | ralrimiva | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ z e. X ) -> A. b e. ( X /. .~ ) ( ( F ` [ z ] .~ ) = ( F ` b ) -> [ z ] .~ = b ) ) |
| 55 | 32 36 54 | ectocld | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ a e. ( X /. .~ ) ) -> A. b e. ( X /. .~ ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 56 | 55 | ralrimiva | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> A. a e. ( X /. .~ ) A. b e. ( X /. .~ ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 57 | dff13 | |- ( F : ( X /. .~ ) -1-1-> [ A ] O <-> ( F : ( X /. .~ ) --> [ A ] O /\ A. a e. ( X /. .~ ) A. b e. ( X /. .~ ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
|
| 58 | 31 56 57 | sylanbrc | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> F : ( X /. .~ ) -1-1-> [ A ] O ) |
| 59 | vex | |- h e. _V |
|
| 60 | elecg | |- ( ( h e. _V /\ A e. Y ) -> ( h e. [ A ] O <-> A O h ) ) |
|
| 61 | 59 7 60 | sylancr | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( h e. [ A ] O <-> A O h ) ) |
| 62 | 5 | gaorb | |- ( A O h <-> ( A e. Y /\ h e. Y /\ E. w e. X ( w .(+) A ) = h ) ) |
| 63 | 61 62 | bitrdi | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( h e. [ A ] O <-> ( A e. Y /\ h e. Y /\ E. w e. X ( w .(+) A ) = h ) ) ) |
| 64 | 63 | biimpa | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ h e. [ A ] O ) -> ( A e. Y /\ h e. Y /\ E. w e. X ( w .(+) A ) = h ) ) |
| 65 | 64 | simp3d | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ h e. [ A ] O ) -> E. w e. X ( w .(+) A ) = h ) |
| 66 | 3 | ovexi | |- .~ e. _V |
| 67 | 66 | ecelqsi | |- ( w e. X -> [ w ] .~ e. ( X /. .~ ) ) |
| 68 | 43 | eqcomd | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ w e. X ) -> ( w .(+) A ) = ( F ` [ w ] .~ ) ) |
| 69 | fveq2 | |- ( z = [ w ] .~ -> ( F ` z ) = ( F ` [ w ] .~ ) ) |
|
| 70 | 69 | rspceeqv | |- ( ( [ w ] .~ e. ( X /. .~ ) /\ ( w .(+) A ) = ( F ` [ w ] .~ ) ) -> E. z e. ( X /. .~ ) ( w .(+) A ) = ( F ` z ) ) |
| 71 | 67 68 70 | syl2an2 | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ w e. X ) -> E. z e. ( X /. .~ ) ( w .(+) A ) = ( F ` z ) ) |
| 72 | eqeq1 | |- ( ( w .(+) A ) = h -> ( ( w .(+) A ) = ( F ` z ) <-> h = ( F ` z ) ) ) |
|
| 73 | 72 | rexbidv | |- ( ( w .(+) A ) = h -> ( E. z e. ( X /. .~ ) ( w .(+) A ) = ( F ` z ) <-> E. z e. ( X /. .~ ) h = ( F ` z ) ) ) |
| 74 | 71 73 | syl5ibcom | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ w e. X ) -> ( ( w .(+) A ) = h -> E. z e. ( X /. .~ ) h = ( F ` z ) ) ) |
| 75 | 74 | rexlimdva | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( E. w e. X ( w .(+) A ) = h -> E. z e. ( X /. .~ ) h = ( F ` z ) ) ) |
| 76 | 75 | imp | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ E. w e. X ( w .(+) A ) = h ) -> E. z e. ( X /. .~ ) h = ( F ` z ) ) |
| 77 | 65 76 | syldan | |- ( ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) /\ h e. [ A ] O ) -> E. z e. ( X /. .~ ) h = ( F ` z ) ) |
| 78 | 77 | ralrimiva | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> A. h e. [ A ] O E. z e. ( X /. .~ ) h = ( F ` z ) ) |
| 79 | dffo3 | |- ( F : ( X /. .~ ) -onto-> [ A ] O <-> ( F : ( X /. .~ ) --> [ A ] O /\ A. h e. [ A ] O E. z e. ( X /. .~ ) h = ( F ` z ) ) ) |
|
| 80 | 31 78 79 | sylanbrc | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> F : ( X /. .~ ) -onto-> [ A ] O ) |
| 81 | df-f1o | |- ( F : ( X /. .~ ) -1-1-onto-> [ A ] O <-> ( F : ( X /. .~ ) -1-1-> [ A ] O /\ F : ( X /. .~ ) -onto-> [ A ] O ) ) |
|
| 82 | 58 80 81 | sylanbrc | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> F : ( X /. .~ ) -1-1-onto-> [ A ] O ) |