This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and codomain of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
| qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | ||
| qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | qliftf | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ( 𝑋 / 𝑅 ) ⟶ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
| 2 | qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
| 3 | qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
| 4 | qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 5 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
| 6 | 1 5 2 | fliftf | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) ⟶ 𝑌 ) ) |
| 7 | df-qs | ⊢ ( 𝑋 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = [ 𝑥 ] 𝑅 } | |
| 8 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) | |
| 9 | 8 | rnmpt | ⊢ ran ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑋 𝑦 = [ 𝑥 ] 𝑅 } |
| 10 | 7 9 | eqtr4i | ⊢ ( 𝑋 / 𝑅 ) = ran ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( 𝑋 / 𝑅 ) = ran ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) ) |
| 12 | 11 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : ( 𝑋 / 𝑅 ) ⟶ 𝑌 ↔ 𝐹 : ran ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] 𝑅 ) ⟶ 𝑌 ) ) |
| 13 | 6 12 | bitr4d | ⊢ ( 𝜑 → ( Fun 𝐹 ↔ 𝐹 : ( 𝑋 / 𝑅 ) ⟶ 𝑌 ) ) |