This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | ||
| orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | ||
| Assertion | gastacos | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∼ 𝐶 ↔ ( 𝐵 ⊕ 𝐴 ) = ( 𝐶 ⊕ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | |
| 3 | orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| 4 | 1 2 | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 6 | subgrcl | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) |
| 8 | 1 | subgss | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
| 9 | 5 8 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐻 ⊆ 𝑋 ) |
| 10 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 11 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 12 | 1 10 11 3 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐻 ⊆ 𝑋 ) → ( 𝐵 ∼ 𝐶 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ) ) ) |
| 13 | 7 9 12 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∼ 𝐶 ↔ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ) ) ) |
| 14 | df-3an | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ) ↔ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ) ) | |
| 15 | 13 14 | bitrdi | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∼ 𝐶 ↔ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ) ) ) |
| 16 | simpr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) | |
| 17 | 16 | biantrurd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ↔ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ) ) ) |
| 18 | simpll | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ) | |
| 19 | simprl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) | |
| 20 | 1 10 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 21 | 7 19 20 | syl2anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) |
| 22 | simprr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐶 ∈ 𝑋 ) | |
| 23 | simplr | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑌 ) | |
| 24 | 1 11 | gaass | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ⊕ ( 𝐶 ⊕ 𝐴 ) ) ) |
| 25 | 18 21 22 23 24 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ⊕ ( 𝐶 ⊕ 𝐴 ) ) ) |
| 26 | 25 | eqeq1d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ⊕ ( 𝐶 ⊕ 𝐴 ) ) = 𝐴 ) ) |
| 27 | 1 11 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) |
| 28 | 7 21 22 27 | syl3anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) |
| 29 | oveq1 | ⊢ ( 𝑢 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) → ( 𝑢 ⊕ 𝐴 ) = ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) ) | |
| 30 | 29 | eqeq1d | ⊢ ( 𝑢 = ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) → ( ( 𝑢 ⊕ 𝐴 ) = 𝐴 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 31 | 30 2 | elrab2 | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ∧ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 32 | 31 | baib | ⊢ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 33 | 28 32 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ⊕ 𝐴 ) = 𝐴 ) ) |
| 34 | 1 | gaf | ⊢ ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 35 | 18 34 | syl | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ⊕ : ( 𝑋 × 𝑌 ) ⟶ 𝑌 ) |
| 36 | 35 22 23 | fovcdmd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐶 ⊕ 𝐴 ) ∈ 𝑌 ) |
| 37 | 1 10 | gacan | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌 ∧ ( 𝐶 ⊕ 𝐴 ) ∈ 𝑌 ) ) → ( ( 𝐵 ⊕ 𝐴 ) = ( 𝐶 ⊕ 𝐴 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ⊕ ( 𝐶 ⊕ 𝐴 ) ) = 𝐴 ) ) |
| 38 | 18 19 23 36 37 | syl13anc | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐵 ⊕ 𝐴 ) = ( 𝐶 ⊕ 𝐴 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ⊕ ( 𝐶 ⊕ 𝐴 ) ) = 𝐴 ) ) |
| 39 | 26 33 38 | 3bitr4d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝐵 ) ( +g ‘ 𝐺 ) 𝐶 ) ∈ 𝐻 ↔ ( 𝐵 ⊕ 𝐴 ) = ( 𝐶 ⊕ 𝐴 ) ) ) |
| 40 | 15 17 39 | 3bitr2d | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ∼ 𝐶 ↔ ( 𝐵 ⊕ 𝐴 ) = ( 𝐶 ⊕ 𝐴 ) ) ) |