This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015) (Proof shortened by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | ||
| orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | ||
| orbsta.f | ⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | ||
| Assertion | orbstaval | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝐵 ] ∼ ) = ( 𝐵 ⊕ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gasta.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | gasta.2 | ⊢ 𝐻 = { 𝑢 ∈ 𝑋 ∣ ( 𝑢 ⊕ 𝐴 ) = 𝐴 } | |
| 3 | orbsta.r | ⊢ ∼ = ( 𝐺 ~QG 𝐻 ) | |
| 4 | orbsta.f | ⊢ 𝐹 = ran ( 𝑘 ∈ 𝑋 ↦ 〈 [ 𝑘 ] ∼ , ( 𝑘 ⊕ 𝐴 ) 〉 ) | |
| 5 | ovexd | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝑘 ∈ 𝑋 ) → ( 𝑘 ⊕ 𝐴 ) ∈ V ) | |
| 6 | 1 2 | gastacl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 | 1 3 | eqger | ⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ∼ Er 𝑋 ) |
| 8 | 6 7 | syl | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → ∼ Er 𝑋 ) |
| 9 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 10 | 9 | a1i | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → 𝑋 ∈ V ) |
| 11 | oveq1 | ⊢ ( 𝑘 = 𝐵 → ( 𝑘 ⊕ 𝐴 ) = ( 𝐵 ⊕ 𝐴 ) ) | |
| 12 | 1 2 3 4 | orbstafun | ⊢ ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) → Fun 𝐹 ) |
| 13 | 4 5 8 10 11 12 | qliftval | ⊢ ( ( ( ⊕ ∈ ( 𝐺 GrpAct 𝑌 ) ∧ 𝐴 ∈ 𝑌 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝐵 ] ∼ ) = ( 𝐵 ⊕ 𝐴 ) ) |