This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mumul . The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mumullem2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | ⊢ ( ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) | |
| 2 | simpr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 3 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) | |
| 4 | 2 3 | pccld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 5 | 4 | nn0red | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) |
| 6 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) | |
| 7 | 2 6 | pccld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
| 8 | 7 | nn0red | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
| 9 | 1red | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 1 ∈ ℝ ) | |
| 10 | le2add | ⊢ ( ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) ∧ ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ) ) | |
| 11 | 5 8 9 9 10 | syl22anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ) ) |
| 12 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 13 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) = 1 ) | |
| 14 | 13 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑝 pCnt 1 ) ) |
| 15 | 3 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 16 | 6 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 17 | pcgcd | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) | |
| 18 | 2 15 16 17 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) |
| 19 | pc1 | ⊢ ( 𝑝 ∈ ℙ → ( 𝑝 pCnt 1 ) = 0 ) | |
| 20 | 19 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 1 ) = 0 ) |
| 21 | 14 18 20 | 3eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) = 0 ) |
| 22 | ifid | ⊢ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , 1 , 1 ) = 1 | |
| 23 | ifeq12 | ⊢ ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , 1 , 1 ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) | |
| 24 | 22 23 | eqtr3id | ⊢ ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → 1 = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) |
| 25 | 24 | eqeq1d | ⊢ ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → ( 1 = 0 ↔ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) |
| 26 | 21 25 | syl5ibrcom | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) → 1 = 0 ) ) |
| 27 | 26 | necon3ad | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 1 ≠ 0 → ¬ ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 28 | 12 27 | mpi | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ¬ ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) ) |
| 29 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 30 | 5 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℂ ) |
| 31 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℂ ) → ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐴 ) ) ) | |
| 32 | 29 30 31 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐴 ) ) ) |
| 33 | 8 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℂ ) |
| 34 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℂ ) → ( ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐵 ) ) ) | |
| 35 | 29 33 34 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ↔ 1 = ( 𝑝 pCnt 𝐵 ) ) ) |
| 36 | 32 35 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ↔ ( 1 = ( 𝑝 pCnt 𝐴 ) ∧ 1 = ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 37 | 28 36 | mtbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ¬ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ¬ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) |
| 39 | eqcom | ⊢ ( ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ) | |
| 40 | 1re | ⊢ 1 ∈ ℝ | |
| 41 | 40 40 | readdcli | ⊢ ( 1 + 1 ) ∈ ℝ |
| 42 | 41 | recni | ⊢ ( 1 + 1 ) ∈ ℂ |
| 43 | 4 7 | nn0addcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℕ0 ) |
| 44 | 43 | nn0red | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) |
| 45 | 44 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℂ ) |
| 46 | subeq0 | ⊢ ( ( ( 1 + 1 ) ∈ ℂ ∧ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℂ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) | |
| 47 | 42 45 46 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 48 | 47 39 | bitrdi | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ) ) |
| 49 | 9 | recnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 1 ∈ ℂ ) |
| 50 | 49 49 30 33 | addsub4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 51 | 50 | eqeq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 1 + 1 ) − ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ) ) |
| 52 | 48 51 | bitr3d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ) ) |
| 54 | subge0 | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) | |
| 55 | 40 5 54 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |
| 56 | subge0 | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ↔ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) | |
| 57 | 40 8 56 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ↔ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) |
| 58 | 55 57 | anbi12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) ) |
| 59 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) → ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ) | |
| 60 | 40 5 59 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ) |
| 61 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) → ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) | |
| 62 | 40 8 61 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) |
| 63 | add20 | ⊢ ( ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ) ∧ ( ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) | |
| 64 | 63 | an4s | ⊢ ( ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) |
| 65 | 64 | ex | ⊢ ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ) → ( ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) ) |
| 66 | 60 62 65 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 0 ≤ ( 1 − ( 𝑝 pCnt 𝐴 ) ) ∧ 0 ≤ ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) ) |
| 67 | 58 66 | sylbird | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) ) |
| 68 | 67 | imp | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) + ( 1 − ( 𝑝 pCnt 𝐵 ) ) ) = 0 ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) |
| 69 | 53 68 | bitrd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) = ( 1 + 1 ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) |
| 70 | 39 69 | bitrid | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( 1 + 1 ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) |
| 71 | 70 | necon3abid | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ↔ ¬ ( ( 1 − ( 𝑝 pCnt 𝐴 ) ) = 0 ∧ ( 1 − ( 𝑝 pCnt 𝐵 ) ) = 0 ) ) ) |
| 72 | 38 71 | mpbird | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) ∧ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) → ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) |
| 73 | 72 | ex | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) |
| 74 | 11 73 | jcad | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) ) |
| 75 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 76 | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) | |
| 77 | 75 76 | jca | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) |
| 78 | 3 77 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) |
| 79 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 80 | nnne0 | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) | |
| 81 | 79 80 | jca | ⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 82 | 6 81 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 83 | pcmul | ⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) | |
| 84 | 2 78 82 83 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) = ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) |
| 85 | 84 | breq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ 1 ) ) |
| 86 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 87 | nn0leltp1 | ⊢ ( ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ 1 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ) ) | |
| 88 | 43 86 87 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ 1 ↔ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ) ) |
| 89 | ltlen | ⊢ ( ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ∈ ℝ ∧ ( 1 + 1 ) ∈ ℝ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ↔ ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) ) | |
| 90 | 44 41 89 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) < ( 1 + 1 ) ↔ ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) ) |
| 91 | 85 88 90 | 3bitrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ↔ ( ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ≤ ( 1 + 1 ) ∧ ( 1 + 1 ) ≠ ( ( 𝑝 pCnt 𝐴 ) + ( 𝑝 pCnt 𝐵 ) ) ) ) ) |
| 92 | 74 91 | sylibrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
| 93 | 92 | ralimdva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
| 94 | 1 93 | biimtrrid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
| 95 | issqf | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) | |
| 96 | issqf | ⊢ ( 𝐵 ∈ ℕ → ( ( μ ‘ 𝐵 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) | |
| 97 | 95 96 | bi2anan9 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) ) |
| 98 | 97 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ 1 ) ) ) |
| 99 | nnmulcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) | |
| 100 | 99 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
| 101 | issqf | ⊢ ( ( 𝐴 · 𝐵 ) ∈ ℕ → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) | |
| 102 | 100 101 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( 𝐴 · 𝐵 ) ) ≤ 1 ) ) |
| 103 | 94 98 102 | 3imtr4d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) ) |
| 104 | 103 | imp | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) |