This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mumul | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → 𝐵 ∈ ℕ ) | |
| 2 | mucl | ⊢ ( 𝐵 ∈ ℕ → ( μ ‘ 𝐵 ) ∈ ℤ ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐵 ) ∈ ℤ ) |
| 4 | 3 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐵 ) ∈ ℂ ) |
| 5 | 4 | mul02d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( 0 · ( μ ‘ 𝐵 ) ) = 0 ) |
| 6 | simpr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ 𝐴 ) = 0 ) | |
| 7 | 6 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( 0 · ( μ ‘ 𝐵 ) ) ) |
| 8 | mumullem1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) | |
| 9 | 8 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 10 | 5 7 9 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐴 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| 11 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → 𝐴 ∈ ℕ ) | |
| 12 | mucl | ⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) ∈ ℤ ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐴 ) ∈ ℤ ) |
| 14 | 13 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐴 ) ∈ ℂ ) |
| 15 | 14 | mul01d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( ( μ ‘ 𝐴 ) · 0 ) = 0 ) |
| 16 | simpr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ 𝐵 ) = 0 ) | |
| 17 | 16 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · 0 ) ) |
| 18 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 19 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 20 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( μ ‘ ( 𝐵 · 𝐴 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( μ ‘ ( 𝐵 · 𝐴 ) ) ) |
| 24 | mumullem1 | ⊢ ( ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐵 · 𝐴 ) ) = 0 ) | |
| 25 | 24 | ancom1s | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐵 · 𝐴 ) ) = 0 ) |
| 26 | 23 25 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 27 | 26 | 3adantl3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = 0 ) |
| 28 | 15 17 27 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( μ ‘ 𝐵 ) = 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| 29 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐴 ∈ ℕ ) | |
| 30 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → 𝐵 ∈ ℕ ) | |
| 31 | 29 30 | nnmulcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
| 32 | mumullem2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) | |
| 33 | muval2 | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℕ ∧ ( μ ‘ ( 𝐴 · 𝐵 ) ) ≠ 0 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) ) | |
| 34 | 31 32 33 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) ) |
| 35 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 36 | 35 | a1i | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → - 1 ∈ ℂ ) |
| 37 | fzfi | ⊢ ( 1 ... 𝐵 ) ∈ Fin | |
| 38 | prmssnn | ⊢ ℙ ⊆ ℕ | |
| 39 | rabss2 | ⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ) | |
| 40 | 38 39 | ax-mp | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } |
| 41 | dvdsssfz1 | ⊢ ( 𝐵 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) | |
| 42 | 30 41 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 43 | 40 42 | sstrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) |
| 44 | ssfi | ⊢ ( ( ( 1 ... 𝐵 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ⊆ ( 1 ... 𝐵 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ) | |
| 45 | 37 43 44 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ) |
| 46 | hashcl | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ∈ ℕ0 ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ∈ ℕ0 ) |
| 48 | fzfi | ⊢ ( 1 ... 𝐴 ) ∈ Fin | |
| 49 | rabss2 | ⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ) | |
| 50 | 38 49 | ax-mp | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } |
| 51 | dvdsssfz1 | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) | |
| 52 | 29 51 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| 53 | 50 52 | sstrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| 54 | ssfi | ⊢ ( ( ( 1 ... 𝐴 ) ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) | |
| 55 | 48 53 54 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ) |
| 56 | hashcl | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ∈ ℕ0 ) |
| 58 | 36 47 57 | expaddd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( - 1 ↑ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) ) |
| 59 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 60 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) | |
| 61 | 60 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 62 | 61 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 63 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) | |
| 64 | 63 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 65 | 64 | adantlr | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
| 66 | euclemma | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 ∥ ( 𝐴 · 𝐵 ) ↔ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) ) ) | |
| 67 | 59 62 65 66 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 · 𝐵 ) ↔ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) ) ) |
| 68 | 67 | rabbidva | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } = { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) } ) |
| 69 | unrab | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∨ 𝑝 ∥ 𝐵 ) } | |
| 70 | 68 69 | eqtr4di | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } = ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) |
| 71 | 70 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) = ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 72 | inrab | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) } | |
| 73 | nprmdvds1 | ⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) | |
| 74 | 73 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ 1 ) |
| 75 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 76 | 75 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 77 | dvdsgcd | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) | |
| 78 | 76 62 65 77 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ) ) |
| 79 | simpll3 | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝐴 gcd 𝐵 ) = 1 ) | |
| 80 | 79 | breq2d | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝐴 gcd 𝐵 ) ↔ 𝑝 ∥ 1 ) ) |
| 81 | 78 80 | sylibd | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) → 𝑝 ∥ 1 ) ) |
| 82 | 74 81 | mtod | ⊢ ( ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) ∧ 𝑝 ∈ ℙ ) → ¬ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 83 | 82 | ralrimiva | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) |
| 84 | rabeq0 | ⊢ ( { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) } = ∅ ↔ ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) ) | |
| 85 | 83 84 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → { 𝑝 ∈ ℙ ∣ ( 𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵 ) } = ∅ ) |
| 86 | 72 85 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = ∅ ) |
| 87 | hashun | ⊢ ( ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∈ Fin ∧ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ∈ Fin ∧ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∩ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) = ∅ ) → ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) | |
| 88 | 55 45 86 87 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 89 | 71 88 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) = ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 90 | 89 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) = ( - 1 ↑ ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) + ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) ) |
| 91 | simprl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐴 ) ≠ 0 ) | |
| 92 | muval2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( μ ‘ 𝐴 ) ≠ 0 ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) | |
| 93 | 29 91 92 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐴 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 94 | simprr | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐵 ) ≠ 0 ) | |
| 95 | muval2 | ⊢ ( ( 𝐵 ∈ ℕ ∧ ( μ ‘ 𝐵 ) ≠ 0 ) → ( μ ‘ 𝐵 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) | |
| 96 | 30 94 95 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ 𝐵 ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) |
| 97 | 93 96 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) · ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐵 } ) ) ) ) |
| 98 | 58 90 97 | 3eqtr4rd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝐴 · 𝐵 ) } ) ) ) |
| 99 | 34 98 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) ∧ ( ( μ ‘ 𝐴 ) ≠ 0 ∧ ( μ ‘ 𝐵 ) ≠ 0 ) ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |
| 100 | 10 28 99 | pm2.61da2ne | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) = 1 ) → ( μ ‘ ( 𝐴 · 𝐵 ) ) = ( ( μ ‘ 𝐴 ) · ( μ ‘ 𝐵 ) ) ) |