This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mumul . The product of two coprime squarefree numbers is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mumullem2 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 | |- ( A. p e. Prime ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) |
|
| 2 | simpr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> p e. Prime ) |
|
| 3 | simpl1 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. NN ) |
|
| 4 | 2 3 | pccld | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. NN0 ) |
| 5 | 4 | nn0red | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. RR ) |
| 6 | simpl2 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. NN ) |
|
| 7 | 2 6 | pccld | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. NN0 ) |
| 8 | 7 | nn0red | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. RR ) |
| 9 | 1red | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> 1 e. RR ) |
|
| 10 | le2add | |- ( ( ( ( p pCnt A ) e. RR /\ ( p pCnt B ) e. RR ) /\ ( 1 e. RR /\ 1 e. RR ) ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) ) ) |
|
| 11 | 5 8 9 9 10 | syl22anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) ) ) |
| 12 | ax-1ne0 | |- 1 =/= 0 |
|
| 13 | simpl3 | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( A gcd B ) = 1 ) |
|
| 14 | 13 | oveq2d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A gcd B ) ) = ( p pCnt 1 ) ) |
| 15 | 3 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> A e. ZZ ) |
| 16 | 6 | nnzd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> B e. ZZ ) |
| 17 | pcgcd | |- ( ( p e. Prime /\ A e. ZZ /\ B e. ZZ ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
|
| 18 | 2 15 16 17 | syl3anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A gcd B ) ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 19 | pc1 | |- ( p e. Prime -> ( p pCnt 1 ) = 0 ) |
|
| 20 | 19 | adantl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt 1 ) = 0 ) |
| 21 | 14 18 20 | 3eqtr3d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) = 0 ) |
| 22 | ifid | |- if ( ( p pCnt A ) <_ ( p pCnt B ) , 1 , 1 ) = 1 |
|
| 23 | ifeq12 | |- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> if ( ( p pCnt A ) <_ ( p pCnt B ) , 1 , 1 ) = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
|
| 24 | 22 23 | eqtr3id | |- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> 1 = if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) ) |
| 25 | 24 | eqeq1d | |- ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> ( 1 = 0 <-> if ( ( p pCnt A ) <_ ( p pCnt B ) , ( p pCnt A ) , ( p pCnt B ) ) = 0 ) ) |
| 26 | 21 25 | syl5ibrcom | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) -> 1 = 0 ) ) |
| 27 | 26 | necon3ad | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 =/= 0 -> -. ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) ) |
| 28 | 12 27 | mpi | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> -. ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) |
| 29 | ax-1cn | |- 1 e. CC |
|
| 30 | 5 | recnd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt A ) e. CC ) |
| 31 | subeq0 | |- ( ( 1 e. CC /\ ( p pCnt A ) e. CC ) -> ( ( 1 - ( p pCnt A ) ) = 0 <-> 1 = ( p pCnt A ) ) ) |
|
| 32 | 29 30 31 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 - ( p pCnt A ) ) = 0 <-> 1 = ( p pCnt A ) ) ) |
| 33 | 8 | recnd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt B ) e. CC ) |
| 34 | subeq0 | |- ( ( 1 e. CC /\ ( p pCnt B ) e. CC ) -> ( ( 1 - ( p pCnt B ) ) = 0 <-> 1 = ( p pCnt B ) ) ) |
|
| 35 | 29 33 34 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 - ( p pCnt B ) ) = 0 <-> 1 = ( p pCnt B ) ) ) |
| 36 | 32 35 | anbi12d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) <-> ( 1 = ( p pCnt A ) /\ 1 = ( p pCnt B ) ) ) ) |
| 37 | 28 36 | mtbird | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) |
| 38 | 37 | adantr | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) |
| 39 | eqcom | |- ( ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) <-> ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) ) |
|
| 40 | 1re | |- 1 e. RR |
|
| 41 | 40 40 | readdcli | |- ( 1 + 1 ) e. RR |
| 42 | 41 | recni | |- ( 1 + 1 ) e. CC |
| 43 | 4 7 | nn0addcld | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. NN0 ) |
| 44 | 43 | nn0red | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. RR ) |
| 45 | 44 | recnd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt A ) + ( p pCnt B ) ) e. CC ) |
| 46 | subeq0 | |- ( ( ( 1 + 1 ) e. CC /\ ( ( p pCnt A ) + ( p pCnt B ) ) e. CC ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
|
| 47 | 42 45 46 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
| 48 | 47 39 | bitrdi | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) ) ) |
| 49 | 9 | recnd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> 1 e. CC ) |
| 50 | 49 49 30 33 | addsub4d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) ) |
| 51 | 50 | eqeq1d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( 1 + 1 ) - ( ( p pCnt A ) + ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
| 52 | 48 51 | bitr3d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
| 53 | 52 | adantr | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 ) ) |
| 54 | subge0 | |- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 0 <_ ( 1 - ( p pCnt A ) ) <-> ( p pCnt A ) <_ 1 ) ) |
|
| 55 | 40 5 54 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 0 <_ ( 1 - ( p pCnt A ) ) <-> ( p pCnt A ) <_ 1 ) ) |
| 56 | subge0 | |- ( ( 1 e. RR /\ ( p pCnt B ) e. RR ) -> ( 0 <_ ( 1 - ( p pCnt B ) ) <-> ( p pCnt B ) <_ 1 ) ) |
|
| 57 | 40 8 56 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 0 <_ ( 1 - ( p pCnt B ) ) <-> ( p pCnt B ) <_ 1 ) ) |
| 58 | 55 57 | anbi12d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) <-> ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) ) |
| 59 | resubcl | |- ( ( 1 e. RR /\ ( p pCnt A ) e. RR ) -> ( 1 - ( p pCnt A ) ) e. RR ) |
|
| 60 | 40 5 59 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 - ( p pCnt A ) ) e. RR ) |
| 61 | resubcl | |- ( ( 1 e. RR /\ ( p pCnt B ) e. RR ) -> ( 1 - ( p pCnt B ) ) e. RR ) |
|
| 62 | 40 8 61 | sylancr | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( 1 - ( p pCnt B ) ) e. RR ) |
| 63 | add20 | |- ( ( ( ( 1 - ( p pCnt A ) ) e. RR /\ 0 <_ ( 1 - ( p pCnt A ) ) ) /\ ( ( 1 - ( p pCnt B ) ) e. RR /\ 0 <_ ( 1 - ( p pCnt B ) ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
|
| 64 | 63 | an4s | |- ( ( ( ( 1 - ( p pCnt A ) ) e. RR /\ ( 1 - ( p pCnt B ) ) e. RR ) /\ ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 65 | 64 | ex | |- ( ( ( 1 - ( p pCnt A ) ) e. RR /\ ( 1 - ( p pCnt B ) ) e. RR ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
| 66 | 60 62 65 | syl2anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( 0 <_ ( 1 - ( p pCnt A ) ) /\ 0 <_ ( 1 - ( p pCnt B ) ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
| 67 | 58 66 | sylbird | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) ) |
| 68 | 67 | imp | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( 1 - ( p pCnt A ) ) + ( 1 - ( p pCnt B ) ) ) = 0 <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 69 | 53 68 | bitrd | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) = ( 1 + 1 ) <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 70 | 39 69 | bitrid | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( 1 + 1 ) = ( ( p pCnt A ) + ( p pCnt B ) ) <-> ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 71 | 70 | necon3abid | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) <-> -. ( ( 1 - ( p pCnt A ) ) = 0 /\ ( 1 - ( p pCnt B ) ) = 0 ) ) ) |
| 72 | 38 71 | mpbird | |- ( ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) /\ ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) ) -> ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) |
| 73 | 72 | ex | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) |
| 74 | 11 73 | jcad | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 75 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 76 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 77 | 75 76 | jca | |- ( A e. NN -> ( A e. ZZ /\ A =/= 0 ) ) |
| 78 | 3 77 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( A e. ZZ /\ A =/= 0 ) ) |
| 79 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 80 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 81 | 79 80 | jca | |- ( B e. NN -> ( B e. ZZ /\ B =/= 0 ) ) |
| 82 | 6 81 | syl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( B e. ZZ /\ B =/= 0 ) ) |
| 83 | pcmul | |- ( ( p e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( p pCnt ( A x. B ) ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) |
|
| 84 | 2 78 82 83 | syl3anc | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( p pCnt ( A x. B ) ) = ( ( p pCnt A ) + ( p pCnt B ) ) ) |
| 85 | 84 | breq1d | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt ( A x. B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 ) ) |
| 86 | 1nn0 | |- 1 e. NN0 |
|
| 87 | nn0leltp1 | |- ( ( ( ( p pCnt A ) + ( p pCnt B ) ) e. NN0 /\ 1 e. NN0 ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) ) ) |
|
| 88 | 43 86 87 | sylancl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ 1 <-> ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) ) ) |
| 89 | ltlen | |- ( ( ( ( p pCnt A ) + ( p pCnt B ) ) e. RR /\ ( 1 + 1 ) e. RR ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
|
| 90 | 44 41 89 | sylancl | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) + ( p pCnt B ) ) < ( 1 + 1 ) <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 91 | 85 88 90 | 3bitrd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( p pCnt ( A x. B ) ) <_ 1 <-> ( ( ( p pCnt A ) + ( p pCnt B ) ) <_ ( 1 + 1 ) /\ ( 1 + 1 ) =/= ( ( p pCnt A ) + ( p pCnt B ) ) ) ) ) |
| 92 | 74 91 | sylibrd | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ p e. Prime ) -> ( ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 93 | 92 | ralimdva | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( A. p e. Prime ( ( p pCnt A ) <_ 1 /\ ( p pCnt B ) <_ 1 ) -> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 94 | 1 93 | biimtrrid | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) -> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 95 | issqf | |- ( A e. NN -> ( ( mmu ` A ) =/= 0 <-> A. p e. Prime ( p pCnt A ) <_ 1 ) ) |
|
| 96 | issqf | |- ( B e. NN -> ( ( mmu ` B ) =/= 0 <-> A. p e. Prime ( p pCnt B ) <_ 1 ) ) |
|
| 97 | 95 96 | bi2anan9 | |- ( ( A e. NN /\ B e. NN ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) ) |
| 98 | 97 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) <-> ( A. p e. Prime ( p pCnt A ) <_ 1 /\ A. p e. Prime ( p pCnt B ) <_ 1 ) ) ) |
| 99 | nnmulcl | |- ( ( A e. NN /\ B e. NN ) -> ( A x. B ) e. NN ) |
|
| 100 | 99 | 3adant3 | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( A x. B ) e. NN ) |
| 101 | issqf | |- ( ( A x. B ) e. NN -> ( ( mmu ` ( A x. B ) ) =/= 0 <-> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
|
| 102 | 100 101 | syl | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( mmu ` ( A x. B ) ) =/= 0 <-> A. p e. Prime ( p pCnt ( A x. B ) ) <_ 1 ) ) |
| 103 | 94 98 102 | 3imtr4d | |- ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) -> ( ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) -> ( mmu ` ( A x. B ) ) =/= 0 ) ) |
| 104 | 103 | imp | |- ( ( ( A e. NN /\ B e. NN /\ ( A gcd B ) = 1 ) /\ ( ( mmu ` A ) =/= 0 /\ ( mmu ` B ) =/= 0 ) ) -> ( mmu ` ( A x. B ) ) =/= 0 ) |