This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add20 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 0 ≤ 𝐴 ) | |
| 2 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 ∈ ℝ ) | |
| 3 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐴 ∈ ℝ ) | |
| 4 | addge02 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 ≤ 𝐴 ↔ 𝐵 ≤ ( 𝐴 + 𝐵 ) ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 0 ≤ 𝐴 ↔ 𝐵 ≤ ( 𝐴 + 𝐵 ) ) ) |
| 6 | 1 5 | mpbid | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 ≤ ( 𝐴 + 𝐵 ) ) |
| 7 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 + 𝐵 ) = 0 ) | |
| 8 | 6 7 | breqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 ≤ 0 ) |
| 9 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 0 ≤ 𝐵 ) | |
| 10 | 0red | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 0 ∈ ℝ ) | |
| 11 | 2 10 | letri3d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐵 = 0 ↔ ( 𝐵 ≤ 0 ∧ 0 ≤ 𝐵 ) ) ) |
| 12 | 8 9 11 | mpbir2and | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐵 = 0 ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 + 𝐵 ) = ( 𝐴 + 0 ) ) |
| 14 | 3 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐴 ∈ ℂ ) |
| 15 | 14 | addridd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 + 0 ) = 𝐴 ) |
| 16 | 13 7 15 | 3eqtr3rd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → 𝐴 = 0 ) |
| 17 | 16 12 | jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) ∧ ( 𝐴 + 𝐵 ) = 0 ) → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 18 | 17 | ex | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 → ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 19 | oveq12 | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = ( 0 + 0 ) ) | |
| 20 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 21 | 19 20 | eqtrdi | ⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = 0 ) |
| 22 | 18 21 | impbid1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) → ( ( 𝐴 + 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |