This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 27-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltlen | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐴 ≤ 𝐵 ) ) | |
| 2 | ltne | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 𝐵 ) → 𝐵 ≠ 𝐴 ) | |
| 3 | 2 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → 𝐵 ≠ 𝐴 ) ) |
| 5 | 1 4 | jcad | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |
| 6 | leloe | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 7 | df-ne | ⊢ ( 𝐵 ≠ 𝐴 ↔ ¬ 𝐵 = 𝐴 ) | |
| 8 | pm2.24 | ⊢ ( 𝐵 = 𝐴 → ( ¬ 𝐵 = 𝐴 → 𝐴 < 𝐵 ) ) | |
| 9 | 8 | eqcoms | ⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐵 = 𝐴 → 𝐴 < 𝐵 ) ) |
| 10 | 7 9 | biimtrid | ⊢ ( 𝐴 = 𝐵 → ( 𝐵 ≠ 𝐴 → 𝐴 < 𝐵 ) ) |
| 11 | 10 | jao1i | ⊢ ( ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) → ( 𝐵 ≠ 𝐴 → 𝐴 < 𝐵 ) ) |
| 12 | 6 11 | biimtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → ( 𝐵 ≠ 𝐴 → 𝐴 < 𝐵 ) ) ) |
| 13 | 12 | impd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) → 𝐴 < 𝐵 ) ) |
| 14 | 5 13 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≠ 𝐴 ) ) ) |