This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsummulc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsummulc2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| fsummulc2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsummulc1 | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsummulc2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsummulc2.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 3 | fsummulc2.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 4 | 1 2 3 | fsummulc2 | ⊢ ( 𝜑 → ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |
| 5 | 1 3 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 6 | 5 2 | mulcomd | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = ( 𝐶 · Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 8 | 3 7 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 9 | 8 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐶 · 𝐵 ) ) |
| 10 | 4 6 9 | 3eqtr4d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ 𝐴 𝐵 · 𝐶 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 · 𝐶 ) ) |