This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If M and N are two coprime integers, multiplication forms a bijection from the set of pairs <. j , k >. where j || M and k || N , to the set of divisors of M x. N . Version of dvdsmulf1o using maps-to notation, which does not require ax-mulf . (Contributed by GG, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpodvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| mpodvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| mpodvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | ||
| mpodvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | ||
| mpodvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | ||
| mpodvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | ||
| Assertion | mpodvdsmulf1o | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpodvdsmulf1o.1 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 2 | mpodvdsmulf1o.2 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 3 | mpodvdsmulf1o.3 | ⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) | |
| 4 | mpodvdsmulf1o.x | ⊢ 𝑋 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑀 } | |
| 5 | mpodvdsmulf1o.y | ⊢ 𝑌 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } | |
| 6 | mpodvdsmulf1o.z | ⊢ 𝑍 = { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑀 · 𝑁 ) } | |
| 7 | mpomulf | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ | |
| 8 | ffn | ⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) : ( ℂ × ℂ ) ⟶ ℂ → ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) |
| 10 | 4 | ssrab3 | ⊢ 𝑋 ⊆ ℕ |
| 11 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 12 | 10 11 | sstri | ⊢ 𝑋 ⊆ ℂ |
| 13 | 5 | ssrab3 | ⊢ 𝑌 ⊆ ℕ |
| 14 | 13 11 | sstri | ⊢ 𝑌 ⊆ ℂ |
| 15 | xpss12 | ⊢ ( ( 𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ ) → ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) | |
| 16 | 12 14 15 | mp2an | ⊢ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) |
| 17 | fnssres | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) Fn ( ℂ × ℂ ) ∧ ( 𝑋 × 𝑌 ) ⊆ ( ℂ × ℂ ) ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) | |
| 18 | 9 16 17 | mp2an | ⊢ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ) |
| 20 | ovres | ⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) | |
| 21 | 20 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 22 | 12 | sseli | ⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∈ ℂ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → 𝑖 ∈ ℂ ) |
| 24 | 14 | sseli | ⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∈ ℂ ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → 𝑗 ∈ ℂ ) |
| 26 | ovmpot | ⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑖 · 𝑗 ) ) | |
| 27 | 26 | eqcomd | ⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( 𝑖 · 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 28 | 23 25 27 | syl2anc | ⊢ ( ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) → ( 𝑖 · 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 30 | 10 | sseli | ⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∈ ℕ ) |
| 31 | 30 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∈ ℕ ) |
| 32 | 13 | sseli | ⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∈ ℕ ) |
| 33 | 32 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∈ ℕ ) |
| 34 | 31 33 | nnmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ ℕ ) |
| 35 | breq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 ∥ 𝑁 ↔ 𝑗 ∥ 𝑁 ) ) | |
| 36 | 35 5 | elrab2 | ⊢ ( 𝑗 ∈ 𝑌 ↔ ( 𝑗 ∈ ℕ ∧ 𝑗 ∥ 𝑁 ) ) |
| 37 | 36 | simprbi | ⊢ ( 𝑗 ∈ 𝑌 → 𝑗 ∥ 𝑁 ) |
| 38 | 37 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∥ 𝑁 ) |
| 39 | breq1 | ⊢ ( 𝑥 = 𝑖 → ( 𝑥 ∥ 𝑀 ↔ 𝑖 ∥ 𝑀 ) ) | |
| 40 | 39 4 | elrab2 | ⊢ ( 𝑖 ∈ 𝑋 ↔ ( 𝑖 ∈ ℕ ∧ 𝑖 ∥ 𝑀 ) ) |
| 41 | 40 | simprbi | ⊢ ( 𝑖 ∈ 𝑋 → 𝑖 ∥ 𝑀 ) |
| 42 | 41 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∥ 𝑀 ) |
| 43 | 33 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑗 ∈ ℤ ) |
| 44 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑁 ∈ ℕ ) |
| 45 | 44 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑁 ∈ ℤ ) |
| 46 | 31 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑖 ∈ ℤ ) |
| 47 | dvdscmul | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( 𝑗 ∥ 𝑁 → ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ) ) | |
| 48 | 43 45 46 47 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑗 ∥ 𝑁 → ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ) ) |
| 49 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑀 ∈ ℕ ) |
| 50 | 49 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → 𝑀 ∈ ℤ ) |
| 51 | dvdsmulc | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∥ 𝑀 → ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 52 | 46 50 45 51 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ∥ 𝑀 → ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 53 | 34 | nnzd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ ℤ ) |
| 54 | 46 45 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑁 ) ∈ ℤ ) |
| 55 | 50 45 | zmulcld | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 56 | dvdstr | ⊢ ( ( ( 𝑖 · 𝑗 ) ∈ ℤ ∧ ( 𝑖 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ∧ ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 57 | 53 54 55 56 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( ( ( 𝑖 · 𝑗 ) ∥ ( 𝑖 · 𝑁 ) ∧ ( 𝑖 · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 58 | 48 52 57 | syl2and | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( ( 𝑗 ∥ 𝑁 ∧ 𝑖 ∥ 𝑀 ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 59 | 38 42 58 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 60 | breq1 | ⊢ ( 𝑥 = ( 𝑖 · 𝑗 ) → ( 𝑥 ∥ ( 𝑀 · 𝑁 ) ↔ ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 61 | 60 6 | elrab2 | ⊢ ( ( 𝑖 · 𝑗 ) ∈ 𝑍 ↔ ( ( 𝑖 · 𝑗 ) ∈ ℕ ∧ ( 𝑖 · 𝑗 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 62 | 34 59 61 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 · 𝑗 ) ∈ 𝑍 ) |
| 63 | 29 62 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ∈ 𝑍 ) |
| 64 | 21 63 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) |
| 65 | 64 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) |
| 66 | ffnov | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) Fn ( 𝑋 × 𝑌 ) ∧ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ( 𝑖 ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) 𝑗 ) ∈ 𝑍 ) ) | |
| 67 | 19 65 66 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ) |
| 68 | 23 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑖 ∈ ℂ ) |
| 69 | 25 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑗 ∈ ℂ ) |
| 70 | 68 69 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑖 · 𝑗 ) ) |
| 71 | 12 | sseli | ⊢ ( 𝑚 ∈ 𝑋 → 𝑚 ∈ ℂ ) |
| 72 | 71 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑚 ∈ ℂ ) |
| 73 | 14 | sseli | ⊢ ( 𝑛 ∈ 𝑌 → 𝑛 ∈ ℂ ) |
| 74 | 73 | ad2antll | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → 𝑛 ∈ ℂ ) |
| 75 | ovmpot | ⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) = ( 𝑚 · 𝑛 ) ) | |
| 76 | 72 74 75 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) = ( 𝑚 · 𝑛 ) ) |
| 77 | 70 76 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ↔ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) |
| 78 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℕ ) |
| 79 | 78 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℕ0 ) |
| 80 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ 𝑋 ) | |
| 81 | 10 80 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℕ ) |
| 82 | 81 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 83 | 78 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℤ ) |
| 84 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℕ ) |
| 85 | 84 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℤ ) |
| 86 | dvdsmul1 | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → 𝑖 ∥ ( 𝑖 · 𝑗 ) ) | |
| 87 | 83 85 86 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ ( 𝑖 · 𝑗 ) ) |
| 88 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) | |
| 89 | 12 80 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℂ ) |
| 90 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ 𝑌 ) | |
| 91 | 14 90 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℂ ) |
| 92 | 89 91 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 · 𝑛 ) = ( 𝑛 · 𝑚 ) ) |
| 93 | 88 92 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑛 · 𝑚 ) ) |
| 94 | 87 93 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ ( 𝑛 · 𝑚 ) ) |
| 95 | 13 90 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℕ ) |
| 96 | 95 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∈ ℤ ) |
| 97 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑁 ∈ ℤ ) |
| 98 | 83 97 | gcdcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑁 ) = ( 𝑁 gcd 𝑖 ) ) |
| 99 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑀 ∈ ℤ ) |
| 100 | 2 | nnzd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 101 | 1 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 102 | 100 101 | gcdcomd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 103 | 102 3 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 104 | 103 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 105 | 42 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ 𝑀 ) |
| 106 | rpdvds | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑁 gcd 𝑀 ) = 1 ∧ 𝑖 ∥ 𝑀 ) ) → ( 𝑁 gcd 𝑖 ) = 1 ) | |
| 107 | 97 83 99 104 105 106 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑖 ) = 1 ) |
| 108 | 98 107 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑁 ) = 1 ) |
| 109 | breq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁 ) ) | |
| 110 | 109 5 | elrab2 | ⊢ ( 𝑛 ∈ 𝑌 ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ∥ 𝑁 ) ) |
| 111 | 110 | simprbi | ⊢ ( 𝑛 ∈ 𝑌 → 𝑛 ∥ 𝑁 ) |
| 112 | 90 111 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑛 ∥ 𝑁 ) |
| 113 | rpdvds | ⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑖 gcd 𝑁 ) = 1 ∧ 𝑛 ∥ 𝑁 ) ) → ( 𝑖 gcd 𝑛 ) = 1 ) | |
| 114 | 83 96 97 108 112 113 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 gcd 𝑛 ) = 1 ) |
| 115 | 81 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∈ ℤ ) |
| 116 | coprmdvds | ⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( ( 𝑖 ∥ ( 𝑛 · 𝑚 ) ∧ ( 𝑖 gcd 𝑛 ) = 1 ) → 𝑖 ∥ 𝑚 ) ) | |
| 117 | 83 96 115 116 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( ( 𝑖 ∥ ( 𝑛 · 𝑚 ) ∧ ( 𝑖 gcd 𝑛 ) = 1 ) → 𝑖 ∥ 𝑚 ) ) |
| 118 | 94 114 117 | mp2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∥ 𝑚 ) |
| 119 | dvdsmul1 | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → 𝑚 ∥ ( 𝑚 · 𝑛 ) ) | |
| 120 | 115 96 119 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ ( 𝑚 · 𝑛 ) ) |
| 121 | 78 | nncnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ∈ ℂ ) |
| 122 | 84 | nncnd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∈ ℂ ) |
| 123 | 121 122 | mulcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑗 · 𝑖 ) ) |
| 124 | 88 123 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 · 𝑛 ) = ( 𝑗 · 𝑖 ) ) |
| 125 | 120 124 | breqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ ( 𝑗 · 𝑖 ) ) |
| 126 | 115 97 | gcdcomd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑁 ) = ( 𝑁 gcd 𝑚 ) ) |
| 127 | breq1 | ⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ 𝑀 ↔ 𝑚 ∥ 𝑀 ) ) | |
| 128 | 127 4 | elrab2 | ⊢ ( 𝑚 ∈ 𝑋 ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ∥ 𝑀 ) ) |
| 129 | 128 | simprbi | ⊢ ( 𝑚 ∈ 𝑋 → 𝑚 ∥ 𝑀 ) |
| 130 | 80 129 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ 𝑀 ) |
| 131 | rpdvds | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( ( 𝑁 gcd 𝑀 ) = 1 ∧ 𝑚 ∥ 𝑀 ) ) → ( 𝑁 gcd 𝑚 ) = 1 ) | |
| 132 | 97 115 99 104 130 131 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑁 gcd 𝑚 ) = 1 ) |
| 133 | 126 132 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑁 ) = 1 ) |
| 134 | 38 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 ∥ 𝑁 ) |
| 135 | rpdvds | ⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑚 gcd 𝑁 ) = 1 ∧ 𝑗 ∥ 𝑁 ) ) → ( 𝑚 gcd 𝑗 ) = 1 ) | |
| 136 | 115 85 97 133 134 135 | syl32anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑚 gcd 𝑗 ) = 1 ) |
| 137 | coprmdvds | ⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ) → ( ( 𝑚 ∥ ( 𝑗 · 𝑖 ) ∧ ( 𝑚 gcd 𝑗 ) = 1 ) → 𝑚 ∥ 𝑖 ) ) | |
| 138 | 115 85 83 137 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( ( 𝑚 ∥ ( 𝑗 · 𝑖 ) ∧ ( 𝑚 gcd 𝑗 ) = 1 ) → 𝑚 ∥ 𝑖 ) ) |
| 139 | 125 136 138 | mp2and | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑚 ∥ 𝑖 ) |
| 140 | dvdseq | ⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑖 ∥ 𝑚 ∧ 𝑚 ∥ 𝑖 ) ) → 𝑖 = 𝑚 ) | |
| 141 | 79 82 118 139 140 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 = 𝑚 ) |
| 142 | 78 | nnne0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑖 ≠ 0 ) |
| 143 | 141 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑛 ) = ( 𝑚 · 𝑛 ) ) |
| 144 | 88 143 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → ( 𝑖 · 𝑗 ) = ( 𝑖 · 𝑛 ) ) |
| 145 | 122 91 121 142 144 | mulcanad | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 𝑗 = 𝑛 ) |
| 146 | 141 145 | opeq12d | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ∧ ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) ) ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) |
| 147 | 146 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 · 𝑗 ) = ( 𝑚 · 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 148 | 77 147 | sylbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) ∧ ( 𝑚 ∈ 𝑋 ∧ 𝑛 ∈ 𝑌 ) ) → ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 149 | 148 | ralrimivva | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌 ) ) → ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 150 | 149 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 151 | fvres | ⊢ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) ) | |
| 152 | fvres | ⊢ ( 𝑣 ∈ ( 𝑋 × 𝑌 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) ) | |
| 153 | 151 152 | eqeqan12d | ⊢ ( ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) ) ) |
| 154 | 153 | imbi1d | ⊢ ( ( 𝑢 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑣 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 155 | 154 | ralbidva | ⊢ ( 𝑢 ∈ ( 𝑋 × 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) |
| 156 | 155 | ralbiia | ⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 157 | fveq2 | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑚 , 𝑛 〉 ) ) | |
| 158 | df-ov | ⊢ ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑚 , 𝑛 〉 ) | |
| 159 | 157 158 | eqtr4di | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ) |
| 160 | 159 | eqeq2d | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) ↔ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ) ) |
| 161 | eqeq2 | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( 𝑢 = 𝑣 ↔ 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) | |
| 162 | 160 161 | imbi12d | ⊢ ( 𝑣 = 〈 𝑚 , 𝑛 〉 → ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 163 | 162 | ralxp | ⊢ ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ) |
| 164 | fveq2 | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑖 , 𝑗 〉 ) ) | |
| 165 | df-ov | ⊢ ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 𝑖 , 𝑗 〉 ) | |
| 166 | 164 165 | eqtr4di | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) ) |
| 167 | 166 | eqeq1d | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ↔ ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) ) ) |
| 168 | eqeq1 | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( 𝑢 = 〈 𝑚 , 𝑛 〉 ↔ 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) | |
| 169 | 167 168 | imbi12d | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ↔ ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 170 | 169 | 2ralbidv | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 𝑢 = 〈 𝑚 , 𝑛 〉 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 171 | 163 170 | bitrid | ⊢ ( 𝑢 = 〈 𝑖 , 𝑗 〉 → ( ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) ) |
| 172 | 171 | ralxp | ⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑢 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 173 | 156 172 | bitri | ⊢ ( ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑖 ∈ 𝑋 ∀ 𝑗 ∈ 𝑌 ∀ 𝑚 ∈ 𝑋 ∀ 𝑛 ∈ 𝑌 ( ( 𝑖 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑗 ) = ( 𝑚 ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) 𝑛 ) → 〈 𝑖 , 𝑗 〉 = 〈 𝑚 , 𝑛 〉 ) ) |
| 174 | 150 173 | sylibr | ⊢ ( 𝜑 → ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) |
| 175 | dff13 | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑢 ∈ ( 𝑋 × 𝑌 ) ∀ 𝑣 ∈ ( 𝑋 × 𝑌 ) ( ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑣 ) → 𝑢 = 𝑣 ) ) ) | |
| 176 | 67 174 175 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ) |
| 177 | breq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 178 | 177 6 | elrab2 | ⊢ ( 𝑤 ∈ 𝑍 ↔ ( 𝑤 ∈ ℕ ∧ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 179 | 178 | simplbi | ⊢ ( 𝑤 ∈ 𝑍 → 𝑤 ∈ ℕ ) |
| 180 | 179 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ ℕ ) |
| 181 | 180 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∈ ℤ ) |
| 182 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ∈ ℕ ) |
| 183 | 182 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ∈ ℤ ) |
| 184 | 182 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑀 ≠ 0 ) |
| 185 | simpr | ⊢ ( ( 𝑤 = 0 ∧ 𝑀 = 0 ) → 𝑀 = 0 ) | |
| 186 | 185 | necon3ai | ⊢ ( 𝑀 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 187 | 184 186 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) |
| 188 | gcdn0cl | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑀 = 0 ) ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) | |
| 189 | 181 183 187 188 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ ℕ ) |
| 190 | gcddvds | ⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 191 | 181 183 190 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 192 | 191 | simprd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) |
| 193 | breq1 | ⊢ ( 𝑥 = ( 𝑤 gcd 𝑀 ) → ( 𝑥 ∥ 𝑀 ↔ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) | |
| 194 | 193 4 | elrab2 | ⊢ ( ( 𝑤 gcd 𝑀 ) ∈ 𝑋 ↔ ( ( 𝑤 gcd 𝑀 ) ∈ ℕ ∧ ( 𝑤 gcd 𝑀 ) ∥ 𝑀 ) ) |
| 195 | 189 192 194 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ 𝑋 ) |
| 196 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ∈ ℕ ) |
| 197 | 196 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ∈ ℤ ) |
| 198 | 196 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑁 ≠ 0 ) |
| 199 | simpr | ⊢ ( ( 𝑤 = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 200 | 199 | necon3ai | ⊢ ( 𝑁 ≠ 0 → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 201 | 198 200 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) |
| 202 | gcdn0cl | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑤 = 0 ∧ 𝑁 = 0 ) ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) | |
| 203 | 181 197 201 202 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ ℕ ) |
| 204 | gcddvds | ⊢ ( ( 𝑤 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 205 | 181 197 204 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑁 ) ∥ 𝑤 ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 206 | 205 | simprd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) |
| 207 | breq1 | ⊢ ( 𝑥 = ( 𝑤 gcd 𝑁 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 208 | 207 5 | elrab2 | ⊢ ( ( 𝑤 gcd 𝑁 ) ∈ 𝑌 ↔ ( ( 𝑤 gcd 𝑁 ) ∈ ℕ ∧ ( 𝑤 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 209 | 203 206 208 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ 𝑌 ) |
| 210 | 195 209 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 211 | 210 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 212 | df-ov | ⊢ ( ( 𝑤 gcd 𝑀 ) ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ( 𝑤 gcd 𝑁 ) ) = ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) | |
| 213 | 189 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑀 ) ∈ ℂ ) |
| 214 | 203 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd 𝑁 ) ∈ ℂ ) |
| 215 | ovmpot | ⊢ ( ( ( 𝑤 gcd 𝑀 ) ∈ ℂ ∧ ( 𝑤 gcd 𝑁 ) ∈ ℂ ) → ( ( 𝑤 gcd 𝑀 ) ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ( 𝑤 gcd 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) | |
| 216 | 213 214 215 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ( 𝑤 gcd 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 217 | 212 216 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 218 | df-ov | ⊢ ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) | |
| 219 | 218 | a1i | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 220 | 211 217 219 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 221 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 222 | rpmulgcd2 | ⊢ ( ( ( 𝑤 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) | |
| 223 | 181 183 197 221 222 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( ( 𝑤 gcd 𝑀 ) · ( 𝑤 gcd 𝑁 ) ) ) |
| 224 | 223 218 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = ( · ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 225 | 178 | simprbi | ⊢ ( 𝑤 ∈ 𝑍 → 𝑤 ∥ ( 𝑀 · 𝑁 ) ) |
| 226 | 225 | adantl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 ∥ ( 𝑀 · 𝑁 ) ) |
| 227 | 1 2 | nnmulcld | ⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ ) |
| 228 | gcdeq | ⊢ ( ( 𝑤 ∈ ℕ ∧ ( 𝑀 · 𝑁 ) ∈ ℕ ) → ( ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 229 | 179 227 228 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ↔ 𝑤 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 230 | 226 229 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ( 𝑤 gcd ( 𝑀 · 𝑁 ) ) = 𝑤 ) |
| 231 | 220 224 230 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) |
| 232 | fveq2 | ⊢ ( 𝑢 = 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 → ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) | |
| 233 | 232 | rspceeqv | ⊢ ( ( 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ∈ ( 𝑋 × 𝑌 ) ∧ 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 〈 ( 𝑤 gcd 𝑀 ) , ( 𝑤 gcd 𝑁 ) 〉 ) ) → ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 234 | 210 231 233 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑍 ) → ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 235 | 234 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑍 ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) |
| 236 | dffo3 | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) ⟶ 𝑍 ∧ ∀ 𝑤 ∈ 𝑍 ∃ 𝑢 ∈ ( 𝑋 × 𝑌 ) 𝑤 = ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) ‘ 𝑢 ) ) ) | |
| 237 | 67 235 236 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) |
| 238 | df-f1o | ⊢ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ↔ ( ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1→ 𝑍 ∧ ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –onto→ 𝑍 ) ) | |
| 239 | 176 237 238 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ , 𝑦 ∈ ℂ ↦ ( 𝑥 · 𝑦 ) ) ↾ ( 𝑋 × 𝑌 ) ) : ( 𝑋 × 𝑌 ) –1-1-onto→ 𝑍 ) |