This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complement of a divisor of N is also a divisor of N . (Contributed by Mario Carneiro, 2-Jul-2015) (Proof shortened by AV, 9-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsdivcl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝐴 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∥ 𝑁 ↔ 𝐴 ∥ 𝑁 ) ) | |
| 2 | 1 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) ) |
| 3 | nndivdvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ∥ 𝑁 ↔ ( 𝑁 / 𝐴 ) ∈ ℕ ) ) | |
| 4 | 3 | biimpd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ∥ 𝑁 → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) |
| 5 | 4 | expcom | ⊢ ( 𝐴 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝐴 ∥ 𝑁 → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) ) |
| 6 | 5 | com23 | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ∥ 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) ) |
| 7 | 6 | imp | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝑁 ∈ ℕ → ( 𝑁 / 𝐴 ) ∈ ℕ ) ) |
| 8 | nnne0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) | |
| 9 | 8 | anim1ci | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0 ) ) |
| 10 | divconjdvds | ⊢ ( ( 𝐴 ∥ 𝑁 ∧ 𝐴 ≠ 0 ) → ( 𝑁 / 𝐴 ) ∥ 𝑁 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝑁 / 𝐴 ) ∥ 𝑁 ) |
| 12 | 7 11 | jctird | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐴 ∥ 𝑁 ) → ( 𝑁 ∈ ℕ → ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) ) |
| 13 | 2 12 | sylbi | ⊢ ( 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } → ( 𝑁 ∈ ℕ → ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) ) |
| 14 | 13 | impcom | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) |
| 15 | breq1 | ⊢ ( 𝑥 = ( 𝑁 / 𝐴 ) → ( 𝑥 ∥ 𝑁 ↔ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) | |
| 16 | 15 | elrab | ⊢ ( ( 𝑁 / 𝐴 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ↔ ( ( 𝑁 / 𝐴 ) ∈ ℕ ∧ ( 𝑁 / 𝐴 ) ∥ 𝑁 ) ) |
| 17 | 14 16 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) → ( 𝑁 / 𝐴 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁 } ) |