This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mplsubrg . (Contributed by Mario Carneiro, 9-Jan-2015) (Revised by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | ||
| mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mpllss.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplsubrglem.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplsubrglem.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplsubrglem.p | ⊢ 𝐴 = ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) | ||
| mplsubrglem.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| mplsubrglem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| mplsubrglem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| Assertion | mplsubrglem | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubg.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mplsubg.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 3 | mplsubg.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 4 | mplsubg.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mpllss.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | mplsubrglem.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 7 | mplsubrglem.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 8 | mplsubrglem.p | ⊢ 𝐴 = ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) | |
| 9 | mplsubrglem.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 10 | mplsubrglem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 11 | mplsubrglem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 13 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 14 | 2 1 3 12 | mplbasss | ⊢ 𝑈 ⊆ ( Base ‘ 𝑆 ) |
| 15 | 14 10 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 16 | 14 11 | sselid | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 17 | 1 12 13 5 15 16 | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) ) |
| 18 | ovexd | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ V ) | |
| 19 | 1 12 | psrelbasfun | ⊢ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) → Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
| 20 | 17 19 | syl | ⊢ ( 𝜑 → Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ) |
| 21 | 7 | fvexi | ⊢ 0 ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 23 | df-ima | ⊢ ( ∘f + “ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) = ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) | |
| 24 | 8 23 | eqtri | ⊢ 𝐴 = ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
| 25 | 2 1 12 7 3 | mplelbas | ⊢ ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ ( Base ‘ 𝑆 ) ∧ 𝑋 finSupp 0 ) ) |
| 26 | 25 | simprbi | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 finSupp 0 ) |
| 27 | 10 26 | syl | ⊢ ( 𝜑 → 𝑋 finSupp 0 ) |
| 28 | 2 1 12 7 3 | mplelbas | ⊢ ( 𝑌 ∈ 𝑈 ↔ ( 𝑌 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 finSupp 0 ) ) |
| 29 | 28 | simprbi | ⊢ ( 𝑌 ∈ 𝑈 → 𝑌 finSupp 0 ) |
| 30 | 11 29 | syl | ⊢ ( 𝜑 → 𝑌 finSupp 0 ) |
| 31 | fsuppxpfi | ⊢ ( ( 𝑋 finSupp 0 ∧ 𝑌 finSupp 0 ) → ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ) | |
| 32 | 27 30 31 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ) |
| 33 | ofmres | ⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) = ( 𝑓 ∈ ( 𝑋 supp 0 ) , 𝑔 ∈ ( 𝑌 supp 0 ) ↦ ( 𝑓 ∘f + 𝑔 ) ) | |
| 34 | ovex | ⊢ ( 𝑓 ∘f + 𝑔 ) ∈ V | |
| 35 | 33 34 | fnmpoi | ⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) |
| 36 | dffn4 | ⊢ ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ↔ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) | |
| 37 | 35 36 | mpbi | ⊢ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) |
| 38 | fofi | ⊢ ( ( ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∈ Fin ∧ ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) : ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) –onto→ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) → ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ∈ Fin ) | |
| 39 | 32 37 38 | sylancl | ⊢ ( 𝜑 → ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ∈ Fin ) |
| 40 | 24 39 | eqeltrid | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 41 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 42 | 1 41 6 12 17 | psrelbas | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 43 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑋 ∈ ( Base ‘ 𝑆 ) ) |
| 44 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 45 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) → 𝑘 ∈ 𝐷 ) | |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑘 ∈ 𝐷 ) |
| 47 | 1 12 9 13 6 43 44 46 | psrmulval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ‘ 𝑘 ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ) |
| 48 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 49 | 2 41 3 6 11 | mplelf | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 50 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 51 | ssrab2 | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⊆ 𝐷 | |
| 52 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) |
| 53 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) | |
| 54 | eqid | ⊢ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } | |
| 55 | 6 54 | psrbagconcl | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 56 | 52 53 55 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) |
| 57 | 51 56 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 58 | 50 57 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 59 | 41 9 7 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
| 60 | 48 58 59 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
| 61 | oveq1 | ⊢ ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) | |
| 62 | 61 | eqeq1d | ⊢ ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ↔ ( 0 · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
| 63 | 60 62 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
| 64 | 2 41 3 6 10 | mplelf | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 65 | 64 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 66 | 51 53 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
| 67 | 65 66 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 68 | 41 9 7 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) |
| 69 | 48 67 68 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) |
| 70 | oveq2 | ⊢ ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = ( ( 𝑋 ‘ 𝑥 ) · 0 ) ) | |
| 71 | 70 | eqeq1d | ⊢ ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ↔ ( ( 𝑋 ‘ 𝑥 ) · 0 ) = 0 ) ) |
| 72 | 69 71 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) ) |
| 73 | 6 | psrbagf | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 74 | 66 73 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 75 | 74 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 ) |
| 76 | 6 | psrbagf | ⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 77 | 52 76 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 78 | 77 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 ) |
| 79 | nn0cn | ⊢ ( ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑛 ) ∈ ℂ ) | |
| 80 | nn0cn | ⊢ ( ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑛 ) ∈ ℂ ) | |
| 81 | pncan3 | ⊢ ( ( ( 𝑥 ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑘 ‘ 𝑛 ) ∈ ℂ ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) | |
| 82 | 79 80 81 | syl2an | ⊢ ( ( ( 𝑥 ‘ 𝑛 ) ∈ ℕ0 ∧ ( 𝑘 ‘ 𝑛 ) ∈ ℕ0 ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 83 | 75 78 82 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 84 | 83 | mpteq2dva | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑛 ) ) ) |
| 85 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑊 ) |
| 86 | ovexd | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ∈ V ) | |
| 87 | 74 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑛 ) ) ) |
| 88 | 77 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑛 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑛 ) ) ) |
| 89 | 85 78 75 88 87 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) |
| 90 | 85 75 86 87 89 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑛 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑛 ) + ( ( 𝑘 ‘ 𝑛 ) − ( 𝑥 ‘ 𝑛 ) ) ) ) ) |
| 91 | 84 90 88 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) = 𝑘 ) |
| 92 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) | |
| 93 | 91 92 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ ( 𝐷 ∖ 𝐴 ) ) |
| 94 | 93 | eldifbd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ¬ ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 95 | ovres | ⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) = ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ) | |
| 96 | fnovrn | ⊢ ( ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∧ 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ ran ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ) | |
| 97 | 96 24 | eleqtrrdi | ⊢ ( ( ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) Fn ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ∧ 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 98 | 35 97 | mp3an1 | ⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ( ∘f + ↾ ( ( 𝑋 supp 0 ) × ( 𝑌 supp 0 ) ) ) ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 99 | 95 98 | eqeltrrd | ⊢ ( ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( 𝑥 ∘f + ( 𝑘 ∘f − 𝑥 ) ) ∈ 𝐴 ) |
| 100 | 94 99 | nsyl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ¬ ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 101 | ianor | ⊢ ( ¬ ( 𝑥 ∈ ( 𝑋 supp 0 ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ↔ ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) | |
| 102 | 100 101 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 103 | eldif | ⊢ ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ( 𝑥 ∈ 𝐷 ∧ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) | |
| 104 | 103 | baib | ⊢ ( 𝑥 ∈ 𝐷 → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
| 105 | 66 104 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ↔ ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ) ) |
| 106 | ssidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 supp 0 ) ⊆ ( 𝑋 supp 0 ) ) | |
| 107 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 108 | 6 107 | rabex2 | ⊢ 𝐷 ∈ V |
| 109 | 108 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝐷 ∈ V ) |
| 110 | 21 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 0 ∈ V ) |
| 111 | 65 106 109 110 | suppssr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) ) → ( 𝑋 ‘ 𝑥 ) = 0 ) |
| 112 | 111 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ ( 𝐷 ∖ ( 𝑋 supp 0 ) ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
| 113 | 105 112 | sylbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) → ( 𝑋 ‘ 𝑥 ) = 0 ) ) |
| 114 | eldif | ⊢ ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ∧ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) | |
| 115 | 114 | baib | ⊢ ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 116 | 57 115 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ↔ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) ) |
| 117 | ssidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 supp 0 ) ⊆ ( 𝑌 supp 0 ) ) | |
| 118 | 50 117 109 110 | suppssr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) ∧ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) |
| 119 | 118 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝐷 ∖ ( 𝑌 supp 0 ) ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
| 120 | 116 119 | sylbird | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
| 121 | 113 120 | orim12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( ¬ 𝑥 ∈ ( 𝑋 supp 0 ) ∨ ¬ ( 𝑘 ∘f − 𝑥 ) ∈ ( 𝑌 supp 0 ) ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) ) |
| 122 | 102 121 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) = 0 ∨ ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) = 0 ) ) |
| 123 | 63 72 122 | mpjaod | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) = 0 ) |
| 124 | 123 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) = ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) |
| 125 | 124 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) · ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) ) |
| 126 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑅 ∈ Ring ) |
| 127 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 128 | 126 127 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → 𝑅 ∈ Mnd ) |
| 129 | 6 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 130 | 46 129 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 131 | 7 | gsumz | ⊢ ( ( 𝑅 ∈ Mnd ∧ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) = 0 ) |
| 132 | 128 130 131 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ 0 ) ) = 0 ) |
| 133 | 47 125 132 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐷 ∖ 𝐴 ) ) → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ‘ 𝑘 ) = 0 ) |
| 134 | 42 133 | suppss | ⊢ ( 𝜑 → ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) supp 0 ) ⊆ 𝐴 ) |
| 135 | suppssfifsupp | ⊢ ( ( ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ V ∧ Fun ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∧ 0 ∈ V ) ∧ ( 𝐴 ∈ Fin ∧ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) supp 0 ) ⊆ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) | |
| 136 | 18 20 22 40 134 135 | syl32anc | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) |
| 137 | 2 1 12 7 3 | mplelbas | ⊢ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ↔ ( ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) finSupp 0 ) ) |
| 138 | 17 136 137 | sylanbrc | ⊢ ( 𝜑 → ( 𝑋 ( .r ‘ 𝑆 ) 𝑌 ) ∈ 𝑈 ) |