This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrmulr.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrmulr.m | ⊢ · = ( .r ‘ 𝑅 ) | ||
| psrmulr.t | ⊢ ∙ = ( .r ‘ 𝑆 ) | ||
| psrmulr.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| psrmulfval.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| psrmulfval.r | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| psrmulval.r | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | ||
| Assertion | psrmulval | ⊢ ( 𝜑 → ( ( 𝐹 ∙ 𝐺 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulr.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrmulr.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psrmulr.m | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | psrmulr.t | ⊢ ∙ = ( .r ‘ 𝑆 ) | |
| 5 | psrmulr.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 6 | psrmulfval.i | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | psrmulfval.r | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 8 | psrmulval.r | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | |
| 9 | 1 2 3 4 5 6 7 | psrmulfval | ⊢ ( 𝜑 → ( 𝐹 ∙ 𝐺 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ) |
| 10 | 9 | fveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ∙ 𝐺 ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) ) |
| 11 | breq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∘r ≤ 𝑥 ↔ 𝑦 ∘r ≤ 𝑋 ) ) | |
| 12 | 11 | rabbidv | ⊢ ( 𝑥 = 𝑋 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ) |
| 13 | fvoveq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) = ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) |
| 15 | 12 14 | mpteq12dv | ⊢ ( 𝑥 = 𝑋 → ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
| 17 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) | |
| 18 | ovex | ⊢ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ∈ V | |
| 19 | 16 17 18 | fvmpt | ⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
| 20 | 8 19 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑥 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |
| 21 | 10 20 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐹 ∙ 𝐺 ) ‘ 𝑋 ) = ( 𝑅 Σg ( 𝑘 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑋 } ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝐺 ‘ ( 𝑋 ∘f − 𝑘 ) ) ) ) ) ) |