This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrmulcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrmulcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrmulcl.t | ⊢ · = ( .r ‘ 𝑆 ) | ||
| psrmulcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| psrmulcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psrmulcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | psrmulcl | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrmulcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrmulcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psrmulcl.t | ⊢ · = ( .r ‘ 𝑆 ) | |
| 4 | psrmulcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | psrmulcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | psrmulcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 8 | 1 2 3 4 5 6 7 | psrmulcllem | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |