This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrbas.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrbas.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| psrbas.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrbas.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrelbas.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | psrelbas | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbas.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrbas.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | psrbas.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 4 | psrbas.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 5 | psrelbas.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | reldmpsr | ⊢ Rel dom mPwSer | |
| 7 | 6 1 4 | elbasov | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 9 | 8 | simpld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 10 | 1 2 3 4 9 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( 𝐾 ↑m 𝐷 ) ) |
| 11 | 5 10 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐾 ↑m 𝐷 ) ) |
| 12 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 13 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 14 | 3 13 | rabex2 | ⊢ 𝐷 ∈ V |
| 15 | 12 14 | elmap | ⊢ ( 𝑋 ∈ ( 𝐾 ↑m 𝐷 ) ↔ 𝑋 : 𝐷 ⟶ 𝐾 ) |
| 16 | 11 15 | sylib | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ 𝐾 ) |