This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for a restriction of the function operation map. Unlike oF R which is a proper class, ` ( oF R |`( A X. B ) ) can be a set by ofmresex , allowing it to be used as a function or structure argument. By ofmresval , the restricted operation map values are the same as the original values, allowing theorems for oF R to be reused. (Contributed by NM, 20-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofmres | ⊢ ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘f 𝑅 𝑔 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv | ⊢ 𝐴 ⊆ V | |
| 2 | ssv | ⊢ 𝐵 ⊆ V | |
| 3 | resmpo | ⊢ ( ( 𝐴 ⊆ V ∧ 𝐵 ⊆ V ) → ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 5 | df-of | ⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 6 | 5 | reseq1i | ⊢ ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) ↾ ( 𝐴 × 𝐵 ) ) |
| 7 | eqid | ⊢ 𝐴 = 𝐴 | |
| 8 | eqid | ⊢ 𝐵 = 𝐵 | |
| 9 | vex | ⊢ 𝑓 ∈ V | |
| 10 | vex | ⊢ 𝑔 ∈ V | |
| 11 | 9 | dmex | ⊢ dom 𝑓 ∈ V |
| 12 | 11 | inex1 | ⊢ ( dom 𝑓 ∩ dom 𝑔 ) ∈ V |
| 13 | 12 | mptex | ⊢ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ∈ V |
| 14 | 5 | ovmpt4g | ⊢ ( ( 𝑓 ∈ V ∧ 𝑔 ∈ V ∧ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ∈ V ) → ( 𝑓 ∘f 𝑅 𝑔 ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 15 | 9 10 13 14 | mp3an | ⊢ ( 𝑓 ∘f 𝑅 𝑔 ) = ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) |
| 16 | 7 8 15 | mpoeq123i | ⊢ ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘f 𝑅 𝑔 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 17 | 4 6 16 | 3eqtr4i | ⊢ ( ∘f 𝑅 ↾ ( 𝐴 × 𝐵 ) ) = ( 𝑓 ∈ 𝐴 , 𝑔 ∈ 𝐵 ↦ ( 𝑓 ∘f 𝑅 𝑔 ) ) |