This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is an ideal of sets (a nonempty collection closed under subset and binary union) of the set D of finite bags (the primary applications being A = Fin and A = ~P B for some B ), then the set of all power series whose coefficient functions are supported on an element of A is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubglem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mplsubglem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mplsubglem.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplsubglem.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplsubglem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplsubglem.0 | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| mplsubglem.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) | ||
| mplsubglem.y | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) | ||
| mplsubglem.u | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) | ||
| mplsubglem.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| Assertion | mplsubglem | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubglem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mplsubglem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | mplsubglem.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplsubglem.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | mplsubglem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplsubglem.0 | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 7 | mplsubglem.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) | |
| 8 | mplsubglem.y | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) | |
| 9 | mplsubglem.u | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) | |
| 10 | mplsubglem.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 11 | ssrab2 | ⊢ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ⊆ 𝐵 | |
| 12 | 9 11 | eqsstrdi | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
| 13 | 1 5 10 4 3 2 | psr0cl | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | 14 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 16 | fconst6g | ⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | |
| 17 | 10 15 16 | 3syl | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 18 | eldifi | ⊢ ( 𝑢 ∈ ( 𝐷 ∖ ∅ ) → 𝑢 ∈ 𝐷 ) | |
| 19 | 3 | fvexi | ⊢ 0 ∈ V |
| 20 | 19 | fvconst2 | ⊢ ( 𝑢 ∈ 𝐷 → ( ( 𝐷 × { 0 } ) ‘ 𝑢 ) = 0 ) |
| 21 | 18 20 | syl | ⊢ ( 𝑢 ∈ ( 𝐷 ∖ ∅ ) → ( ( 𝐷 × { 0 } ) ‘ 𝑢 ) = 0 ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐷 ∖ ∅ ) ) → ( ( 𝐷 × { 0 } ) ‘ 𝑢 ) = 0 ) |
| 23 | 17 22 | suppss | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) ⊆ ∅ ) |
| 24 | ss0 | ⊢ ( ( ( 𝐷 × { 0 } ) supp 0 ) ⊆ ∅ → ( ( 𝐷 × { 0 } ) supp 0 ) = ∅ ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) = ∅ ) |
| 26 | 25 6 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) |
| 27 | 9 | eleq2d | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∈ 𝑈 ↔ ( 𝐷 × { 0 } ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 28 | oveq1 | ⊢ ( 𝑔 = ( 𝐷 × { 0 } ) → ( 𝑔 supp 0 ) = ( ( 𝐷 × { 0 } ) supp 0 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑔 = ( 𝐷 × { 0 } ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) ) |
| 30 | 29 | elrab | ⊢ ( ( 𝐷 × { 0 } ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( 𝐷 × { 0 } ) ∈ 𝐵 ∧ ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) ) |
| 31 | 27 30 | bitrdi | ⊢ ( 𝜑 → ( ( 𝐷 × { 0 } ) ∈ 𝑈 ↔ ( ( 𝐷 × { 0 } ) ∈ 𝐵 ∧ ( ( 𝐷 × { 0 } ) supp 0 ) ∈ 𝐴 ) ) ) |
| 32 | 13 26 31 | mpbir2and | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝑈 ) |
| 33 | 32 | ne0d | ⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
| 34 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 35 | 10 | grpmgmd | ⊢ ( 𝜑 → 𝑅 ∈ Mgm ) |
| 36 | 35 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑅 ∈ Mgm ) |
| 37 | 9 | eleq2d | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↔ 𝑢 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 38 | oveq1 | ⊢ ( 𝑔 = 𝑢 → ( 𝑔 supp 0 ) = ( 𝑢 supp 0 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑔 = 𝑢 → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) |
| 40 | 39 | elrab | ⊢ ( 𝑢 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( 𝑢 ∈ 𝐵 ∧ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) |
| 41 | 37 40 | bitrdi | ⊢ ( 𝜑 → ( 𝑢 ∈ 𝑈 ↔ ( 𝑢 ∈ 𝐵 ∧ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) ) |
| 42 | 41 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 ∈ 𝐵 ∧ ( 𝑢 supp 0 ) ∈ 𝐴 ) ) |
| 43 | 42 | simpld | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ∈ 𝐵 ) |
| 44 | 43 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑢 ∈ 𝐵 ) |
| 45 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) |
| 46 | 45 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑣 ∈ 𝑈 ↔ 𝑣 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 47 | oveq1 | ⊢ ( 𝑔 = 𝑣 → ( 𝑔 supp 0 ) = ( 𝑣 supp 0 ) ) | |
| 48 | 47 | eleq1d | ⊢ ( 𝑔 = 𝑣 → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 49 | 48 | elrab | ⊢ ( 𝑣 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 50 | 46 49 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑣 ∈ 𝑈 ↔ ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) ) |
| 51 | 50 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 52 | 51 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝐵 ) |
| 53 | 1 2 34 36 44 52 | psraddcl | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ) |
| 54 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V ) | |
| 55 | sseq2 | ⊢ ( 𝑥 = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) | |
| 56 | 55 | imbi1d | ⊢ ( 𝑥 = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ) ) |
| 57 | 56 | albidv | ⊢ ( 𝑥 = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ) ) |
| 58 | 8 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 59 | 58 | alrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 60 | 59 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 61 | 60 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 62 | 42 | simprd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 supp 0 ) ∈ 𝐴 ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 supp 0 ) ∈ 𝐴 ) |
| 64 | 51 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 supp 0 ) ∈ 𝐴 ) |
| 65 | 7 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) |
| 67 | uneq1 | ⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( 𝑥 ∪ 𝑦 ) = ( ( 𝑢 supp 0 ) ∪ 𝑦 ) ) | |
| 68 | 67 | eleq1d | ⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ↔ ( ( 𝑢 supp 0 ) ∪ 𝑦 ) ∈ 𝐴 ) ) |
| 69 | uneq2 | ⊢ ( 𝑦 = ( 𝑣 supp 0 ) → ( ( 𝑢 supp 0 ) ∪ 𝑦 ) = ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) | |
| 70 | 69 | eleq1d | ⊢ ( 𝑦 = ( 𝑣 supp 0 ) → ( ( ( 𝑢 supp 0 ) ∪ 𝑦 ) ∈ 𝐴 ↔ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ∈ 𝐴 ) ) |
| 71 | 68 70 | rspc2va | ⊢ ( ( ( ( 𝑢 supp 0 ) ∈ 𝐴 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) → ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ∈ 𝐴 ) |
| 72 | 63 64 66 71 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ∈ 𝐴 ) |
| 73 | 57 61 72 | rspcdva | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑦 ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ) |
| 74 | 1 14 4 2 53 | psrelbas | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 75 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 76 | 1 2 75 34 44 52 | psradd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) = ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ) |
| 77 | 76 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) ) |
| 79 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ 𝐷 ) | |
| 80 | 1 14 4 2 43 | psrelbas | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑢 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 81 | 80 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑢 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 82 | 81 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑢 Fn 𝐷 ) |
| 83 | 1 14 4 2 52 | psrelbas | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 84 | 83 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 Fn 𝐷 ) |
| 85 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 86 | 4 85 | rabex2 | ⊢ 𝐷 ∈ V |
| 87 | 86 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝐷 ∈ V ) |
| 88 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 89 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ 𝐷 ) → ( 𝑢 ‘ 𝑘 ) = ( 𝑢 ‘ 𝑘 ) ) | |
| 90 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ 𝐷 ) → ( 𝑣 ‘ 𝑘 ) = ( 𝑣 ‘ 𝑘 ) ) | |
| 91 | 82 84 87 87 88 89 90 | ofval | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) ) |
| 92 | 79 91 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ∘f ( +g ‘ 𝑅 ) 𝑣 ) ‘ 𝑘 ) = ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) ) |
| 93 | ssun1 | ⊢ ( 𝑢 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) | |
| 94 | sscon | ⊢ ( ( 𝑢 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) | |
| 95 | 93 94 | ax-mp | ⊢ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) |
| 96 | 95 | sseli | ⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) |
| 97 | ssidd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( 𝑢 supp 0 ) ⊆ ( 𝑢 supp 0 ) ) | |
| 98 | 86 | a1i | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝐷 ∈ V ) |
| 99 | 19 | a1i | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 0 ∈ V ) |
| 100 | 80 97 98 99 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) → ( 𝑢 ‘ 𝑘 ) = 0 ) |
| 101 | 100 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑢 supp 0 ) ) ) → ( 𝑢 ‘ 𝑘 ) = 0 ) |
| 102 | 96 101 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( 𝑢 ‘ 𝑘 ) = 0 ) |
| 103 | ssun2 | ⊢ ( 𝑣 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) | |
| 104 | sscon | ⊢ ( ( 𝑣 supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) | |
| 105 | 103 104 | ax-mp | ⊢ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ⊆ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) |
| 106 | 105 | sseli | ⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) |
| 107 | ssidd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 supp 0 ) ⊆ ( 𝑣 supp 0 ) ) | |
| 108 | 19 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 0 ∈ V ) |
| 109 | 83 107 87 108 | suppssr | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( 𝑣 ‘ 𝑘 ) = 0 ) |
| 110 | 106 109 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( 𝑣 ‘ 𝑘 ) = 0 ) |
| 111 | 102 110 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) = ( 0 ( +g ‘ 𝑅 ) 0 ) ) |
| 112 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑅 ∈ Grp ) |
| 113 | 14 75 3 | grplid | ⊢ ( ( 𝑅 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 114 | 112 15 113 | syl2anc2 | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 115 | 114 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( 0 ( +g ‘ 𝑅 ) 0 ) = 0 ) |
| 116 | 111 115 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) = 0 ) |
| 117 | 78 92 116 | 3eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = 0 ) |
| 118 | 74 117 | suppss | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) |
| 119 | sseq1 | ⊢ ( 𝑦 = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) ) ) | |
| 120 | eleq1 | ⊢ ( 𝑦 = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) | |
| 121 | 119 120 | imbi12d | ⊢ ( 𝑦 = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 122 | 121 | spcgv | ⊢ ( ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V → ( ∀ 𝑦 ( 𝑦 ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → 𝑦 ∈ 𝐴 ) → ( ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( ( 𝑢 supp 0 ) ∪ ( 𝑣 supp 0 ) ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 123 | 54 73 118 122 | syl3c | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) |
| 124 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) |
| 125 | 124 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ↔ ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 126 | oveq1 | ⊢ ( 𝑔 = ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) → ( 𝑔 supp 0 ) = ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ) | |
| 127 | 126 | eleq1d | ⊢ ( 𝑔 = ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 128 | 127 | elrab | ⊢ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ∧ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 129 | 125 128 | bitrdi | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ↔ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ∧ ( ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 130 | 53 123 129 | mpbir2and | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ) |
| 131 | 130 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ) |
| 132 | 1 5 10 | psrgrp | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 133 | eqid | ⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) | |
| 134 | 2 133 | grpinvcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑢 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 135 | 132 43 134 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ) |
| 136 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ V ) | |
| 137 | sseq2 | ⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( 𝑢 supp 0 ) ) ) | |
| 138 | 137 | imbi1d | ⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 139 | 138 | albidv | ⊢ ( 𝑥 = ( 𝑢 supp 0 ) → ( ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 140 | 60 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 141 | 139 140 62 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ∀ 𝑦 ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ) |
| 142 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝐼 ∈ 𝑊 ) |
| 143 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → 𝑅 ∈ Grp ) |
| 144 | eqid | ⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) | |
| 145 | 1 142 143 4 144 2 133 43 | psrneg | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) = ( ( invg ‘ 𝑅 ) ∘ 𝑢 ) ) |
| 146 | 145 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) = ( ( ( invg ‘ 𝑅 ) ∘ 𝑢 ) supp 0 ) ) |
| 147 | 14 144 | grpinvfn | ⊢ ( invg ‘ 𝑅 ) Fn ( Base ‘ 𝑅 ) |
| 148 | 147 | a1i | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( invg ‘ 𝑅 ) Fn ( Base ‘ 𝑅 ) ) |
| 149 | 3 144 | grpinvid | ⊢ ( 𝑅 ∈ Grp → ( ( invg ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 150 | 143 149 | syl | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑅 ) ‘ 0 ) = 0 ) |
| 151 | 148 80 98 99 150 | suppcoss | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑅 ) ∘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) ) |
| 152 | 146 151 | eqsstrd | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) ) |
| 153 | sseq1 | ⊢ ( 𝑦 = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) → ( 𝑦 ⊆ ( 𝑢 supp 0 ) ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) ) ) | |
| 154 | eleq1 | ⊢ ( 𝑦 = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) → ( 𝑦 ∈ 𝐴 ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) | |
| 155 | 153 154 | imbi12d | ⊢ ( 𝑦 = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) → ( ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 156 | 155 | spcgv | ⊢ ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ V → ( ∀ 𝑦 ( 𝑦 ⊆ ( 𝑢 supp 0 ) → 𝑦 ∈ 𝐴 ) → ( ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ⊆ ( 𝑢 supp 0 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 157 | 136 141 152 156 | syl3c | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) |
| 158 | 45 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ↔ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 159 | oveq1 | ⊢ ( 𝑔 = ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) → ( 𝑔 supp 0 ) = ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ) | |
| 160 | 159 | eleq1d | ⊢ ( 𝑔 = ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) |
| 161 | 160 | elrab | ⊢ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) |
| 162 | 158 161 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ↔ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 163 | 135 157 162 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) |
| 164 | 131 163 | jca | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝑈 ) → ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) |
| 165 | 164 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) |
| 166 | 2 34 133 | issubg2 | ⊢ ( 𝑆 ∈ Grp → ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ↔ ( 𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) ) ) |
| 167 | 132 166 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ↔ ( 𝑈 ⊆ 𝐵 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 ( 𝑢 ( +g ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑢 ) ∈ 𝑈 ) ) ) ) |
| 168 | 12 33 165 167 | mpbir3and | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |