This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set D of finite bags (the primary applications being A = Fin and A = ~P B for some B ), then the set of all power series whose coefficient functions are supported on an element of A is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubglem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| mplsubglem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| mplsubglem.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplsubglem.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplsubglem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplsubglem.0 | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | ||
| mplsubglem.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) | ||
| mplsubglem.y | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) | ||
| mplsubglem.u | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) | ||
| mpllsslem.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mpllsslem | ⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubglem.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mplsubglem.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | mplsubglem.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplsubglem.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | mplsubglem.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplsubglem.0 | ⊢ ( 𝜑 → ∅ ∈ 𝐴 ) | |
| 7 | mplsubglem.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 ∪ 𝑦 ) ∈ 𝐴 ) | |
| 8 | mplsubglem.y | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ⊆ 𝑥 ) ) → 𝑦 ∈ 𝐴 ) | |
| 9 | mplsubglem.u | ⊢ ( 𝜑 → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) | |
| 10 | mpllsslem.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 11 | 1 5 10 | psrsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑆 ) ) |
| 12 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) | |
| 13 | 2 | a1i | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑆 ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) ) | |
| 15 | eqidd | ⊢ ( 𝜑 → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) ) | |
| 16 | eqidd | ⊢ ( 𝜑 → ( LSubSp ‘ 𝑆 ) = ( LSubSp ‘ 𝑆 ) ) | |
| 17 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 18 | 10 17 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 19 | 1 2 3 4 5 6 7 8 9 18 | mplsubglem | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 20 | 2 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) → 𝑈 ⊆ 𝐵 ) |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐵 ) |
| 22 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 23 | 22 | subg0cl | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) → ( 0g ‘ 𝑆 ) ∈ 𝑈 ) |
| 24 | ne0i | ⊢ ( ( 0g ‘ 𝑆 ) ∈ 𝑈 → 𝑈 ≠ ∅ ) | |
| 25 | 19 23 24 | 3syl | ⊢ ( 𝜑 → 𝑈 ≠ ∅ ) |
| 26 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 27 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 29 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑅 ∈ Ring ) |
| 30 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) | |
| 31 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑣 ∈ 𝑈 ) | |
| 32 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑈 = { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) |
| 33 | 32 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 ∈ 𝑈 ↔ 𝑣 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 34 | oveq1 | ⊢ ( 𝑔 = 𝑣 → ( 𝑔 supp 0 ) = ( 𝑣 supp 0 ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑔 = 𝑣 → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 36 | 35 | elrab | ⊢ ( 𝑣 ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 37 | 33 36 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 ∈ 𝑈 ↔ ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) ) |
| 38 | 31 37 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 ∈ 𝐵 ∧ ( 𝑣 supp 0 ) ∈ 𝐴 ) ) |
| 39 | 38 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑣 ∈ 𝐵 ) |
| 40 | 1 27 28 2 29 30 39 | psrvscacl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ) |
| 41 | ovex | ⊢ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V | |
| 42 | 41 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V ) |
| 43 | sseq2 | ⊢ ( 𝑥 = ( 𝑣 supp 0 ) → ( 𝑦 ⊆ 𝑥 ↔ 𝑦 ⊆ ( 𝑣 supp 0 ) ) ) | |
| 44 | 43 | imbi1d | ⊢ ( 𝑥 = ( 𝑣 supp 0 ) → ( ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ ( 𝑣 supp 0 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 45 | 44 | albidv | ⊢ ( 𝑥 = ( 𝑣 supp 0 ) → ( ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ⊆ ( 𝑣 supp 0 ) → 𝑦 ∈ 𝐴 ) ) ) |
| 46 | 8 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 47 | 46 | alrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ⊆ 𝑥 → 𝑦 ∈ 𝐴 ) ) |
| 50 | 38 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 supp 0 ) ∈ 𝐴 ) |
| 51 | 45 49 50 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ∀ 𝑦 ( 𝑦 ⊆ ( 𝑣 supp 0 ) → 𝑦 ∈ 𝐴 ) ) |
| 52 | 1 28 4 2 40 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 53 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 54 | 30 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → 𝑢 ∈ ( Base ‘ 𝑅 ) ) |
| 55 | 39 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → 𝑣 ∈ 𝐵 ) |
| 56 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) → 𝑘 ∈ 𝐷 ) | |
| 57 | 56 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → 𝑘 ∈ 𝐷 ) |
| 58 | 1 27 28 2 53 4 54 55 57 | psrvscaval | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) ) |
| 59 | 1 28 4 2 39 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝑣 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 60 | ssidd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑣 supp 0 ) ⊆ ( 𝑣 supp 0 ) ) | |
| 61 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 62 | 4 61 | rabex2 | ⊢ 𝐷 ∈ V |
| 63 | 62 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 𝐷 ∈ V ) |
| 64 | 3 | fvexi | ⊢ 0 ∈ V |
| 65 | 64 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → 0 ∈ V ) |
| 66 | 59 60 63 65 | suppssr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( 𝑣 ‘ 𝑘 ) = 0 ) |
| 67 | 66 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( 𝑢 ( .r ‘ 𝑅 ) ( 𝑣 ‘ 𝑘 ) ) = ( 𝑢 ( .r ‘ 𝑅 ) 0 ) ) |
| 68 | 28 53 3 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑢 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 69 | 10 30 68 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 70 | 69 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( 𝑢 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 71 | 58 67 70 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) ∧ 𝑘 ∈ ( 𝐷 ∖ ( 𝑣 supp 0 ) ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ‘ 𝑘 ) = 0 ) |
| 72 | 52 71 | suppss | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( 𝑣 supp 0 ) ) |
| 73 | sseq1 | ⊢ ( 𝑦 = ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( 𝑦 ⊆ ( 𝑣 supp 0 ) ↔ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( 𝑣 supp 0 ) ) ) | |
| 74 | eleq1 | ⊢ ( 𝑦 = ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( 𝑦 ∈ 𝐴 ↔ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) | |
| 75 | 73 74 | imbi12d | ⊢ ( 𝑦 = ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) → ( ( 𝑦 ⊆ ( 𝑣 supp 0 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( 𝑣 supp 0 ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 76 | 75 | spcgv | ⊢ ( ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ V → ( ∀ 𝑦 ( 𝑦 ⊆ ( 𝑣 supp 0 ) → 𝑦 ∈ 𝐴 ) → ( ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ⊆ ( 𝑣 supp 0 ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 77 | 42 51 72 76 | syl3c | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) |
| 78 | 32 | eleq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ↔ ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ) ) |
| 79 | oveq1 | ⊢ ( 𝑔 = ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) → ( 𝑔 supp 0 ) = ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ) | |
| 80 | 79 | eleq1d | ⊢ ( 𝑔 = ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) → ( ( 𝑔 supp 0 ) ∈ 𝐴 ↔ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 81 | 80 | elrab | ⊢ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ { 𝑔 ∈ 𝐵 ∣ ( 𝑔 supp 0 ) ∈ 𝐴 } ↔ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ∧ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) |
| 82 | 78 81 | bitrdi | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ↔ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝐵 ∧ ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) supp 0 ) ∈ 𝐴 ) ) ) |
| 83 | 40 77 82 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ) ) → ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ) |
| 84 | 83 | 3adantr3 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ) ) → ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ) |
| 85 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ) ) → 𝑤 ∈ 𝑈 ) | |
| 86 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 87 | 86 | subgcl | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ( +g ‘ 𝑆 ) 𝑤 ) ∈ 𝑈 ) |
| 88 | 26 84 85 87 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( Base ‘ 𝑅 ) ∧ 𝑣 ∈ 𝑈 ∧ 𝑤 ∈ 𝑈 ) ) → ( ( 𝑢 ( ·𝑠 ‘ 𝑆 ) 𝑣 ) ( +g ‘ 𝑆 ) 𝑤 ) ∈ 𝑈 ) |
| 89 | 11 12 13 14 15 16 21 25 88 | islssd | ⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑆 ) ) |