This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014) Generalize to magmas. (Revised by SN, 12-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psraddcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psraddcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psraddcl.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| psraddcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Mgm ) | ||
| psraddcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| psraddcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | psraddcl | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psraddcl.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psraddcl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | psraddcl.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 4 | psraddcl.r | ⊢ ( 𝜑 → 𝑅 ∈ Mgm ) | |
| 5 | psraddcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | psraddcl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 9 | 7 8 | mgmcl | ⊢ ( ( 𝑅 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝑅 ∈ Mgm ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 11 | 4 10 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 13 | 1 7 12 2 5 | psrelbas | ⊢ ( 𝜑 → 𝑋 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 14 | 1 7 12 2 6 | psrelbas | ⊢ ( 𝜑 → 𝑌 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 16 | 15 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 17 | 16 | a1i | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 18 | inidm | ⊢ ( { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 19 | 11 13 14 17 17 18 | off | ⊢ ( 𝜑 → ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 20 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 21 | 20 16 | elmap | ⊢ ( ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ↔ ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 22 | 19 21 | sylibr | ⊢ ( 𝜑 → ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 23 | 1 2 8 3 5 6 | psradd | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑋 ∘f ( +g ‘ 𝑅 ) 𝑌 ) ) |
| 24 | reldmpsr | ⊢ Rel dom mPwSer | |
| 25 | 24 1 2 | elbasov | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 26 | 5 25 | syl | ⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 27 | 26 | simpld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 28 | 1 7 12 2 27 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 29 | 22 23 28 | 3eltr4d | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |