This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| psr0cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psr0cl.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| psr0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| Assertion | psr0cl | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 4 | psr0cl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psr0cl.o | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | psr0cl.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | 7 5 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 9 | fconst6g | ⊢ ( 0 ∈ ( Base ‘ 𝑅 ) → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | |
| 10 | 3 8 9 | 3syl | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 11 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 12 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 13 | 4 12 | rabex2 | ⊢ 𝐷 ∈ V |
| 14 | 11 13 | elmap | ⊢ ( ( 𝐷 × { 0 } ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ↔ ( 𝐷 × { 0 } ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 15 | 10 14 | sylibr | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 16 | 1 7 4 6 2 | psrbas | ⊢ ( 𝜑 → 𝐵 = ( ( Base ‘ 𝑅 ) ↑m 𝐷 ) ) |
| 17 | 15 16 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐷 × { 0 } ) ∈ 𝐵 ) |