This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 22-Jun-1994) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 25-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | spcgv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | spcgv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcgv.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 3 | id | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ V ) | |
| 4 | 1 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 5 | 3 4 | spcdv | ⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |
| 6 | 2 5 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 𝜑 → 𝜓 ) ) |