This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is an ideal of sets (a nonempty collection closed under subset and binary union) of the set D of finite bags (the primary applications being A = Fin and A = ~P B for some B ), then the set of all power series whose coefficient functions are supported on an element of A is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by AV, 16-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplsubglem.s | |- S = ( I mPwSer R ) |
|
| mplsubglem.b | |- B = ( Base ` S ) |
||
| mplsubglem.z | |- .0. = ( 0g ` R ) |
||
| mplsubglem.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplsubglem.i | |- ( ph -> I e. W ) |
||
| mplsubglem.0 | |- ( ph -> (/) e. A ) |
||
| mplsubglem.a | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x u. y ) e. A ) |
||
| mplsubglem.y | |- ( ( ph /\ ( x e. A /\ y C_ x ) ) -> y e. A ) |
||
| mplsubglem.u | |- ( ph -> U = { g e. B | ( g supp .0. ) e. A } ) |
||
| mplsubglem.r | |- ( ph -> R e. Grp ) |
||
| Assertion | mplsubglem | |- ( ph -> U e. ( SubGrp ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplsubglem.s | |- S = ( I mPwSer R ) |
|
| 2 | mplsubglem.b | |- B = ( Base ` S ) |
|
| 3 | mplsubglem.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplsubglem.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | mplsubglem.i | |- ( ph -> I e. W ) |
|
| 6 | mplsubglem.0 | |- ( ph -> (/) e. A ) |
|
| 7 | mplsubglem.a | |- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x u. y ) e. A ) |
|
| 8 | mplsubglem.y | |- ( ( ph /\ ( x e. A /\ y C_ x ) ) -> y e. A ) |
|
| 9 | mplsubglem.u | |- ( ph -> U = { g e. B | ( g supp .0. ) e. A } ) |
|
| 10 | mplsubglem.r | |- ( ph -> R e. Grp ) |
|
| 11 | ssrab2 | |- { g e. B | ( g supp .0. ) e. A } C_ B |
|
| 12 | 9 11 | eqsstrdi | |- ( ph -> U C_ B ) |
| 13 | 1 5 10 4 3 2 | psr0cl | |- ( ph -> ( D X. { .0. } ) e. B ) |
| 14 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 15 | 14 3 | grpidcl | |- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 16 | fconst6g | |- ( .0. e. ( Base ` R ) -> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
|
| 17 | 10 15 16 | 3syl | |- ( ph -> ( D X. { .0. } ) : D --> ( Base ` R ) ) |
| 18 | eldifi | |- ( u e. ( D \ (/) ) -> u e. D ) |
|
| 19 | 3 | fvexi | |- .0. e. _V |
| 20 | 19 | fvconst2 | |- ( u e. D -> ( ( D X. { .0. } ) ` u ) = .0. ) |
| 21 | 18 20 | syl | |- ( u e. ( D \ (/) ) -> ( ( D X. { .0. } ) ` u ) = .0. ) |
| 22 | 21 | adantl | |- ( ( ph /\ u e. ( D \ (/) ) ) -> ( ( D X. { .0. } ) ` u ) = .0. ) |
| 23 | 17 22 | suppss | |- ( ph -> ( ( D X. { .0. } ) supp .0. ) C_ (/) ) |
| 24 | ss0 | |- ( ( ( D X. { .0. } ) supp .0. ) C_ (/) -> ( ( D X. { .0. } ) supp .0. ) = (/) ) |
|
| 25 | 23 24 | syl | |- ( ph -> ( ( D X. { .0. } ) supp .0. ) = (/) ) |
| 26 | 25 6 | eqeltrd | |- ( ph -> ( ( D X. { .0. } ) supp .0. ) e. A ) |
| 27 | 9 | eleq2d | |- ( ph -> ( ( D X. { .0. } ) e. U <-> ( D X. { .0. } ) e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 28 | oveq1 | |- ( g = ( D X. { .0. } ) -> ( g supp .0. ) = ( ( D X. { .0. } ) supp .0. ) ) |
|
| 29 | 28 | eleq1d | |- ( g = ( D X. { .0. } ) -> ( ( g supp .0. ) e. A <-> ( ( D X. { .0. } ) supp .0. ) e. A ) ) |
| 30 | 29 | elrab | |- ( ( D X. { .0. } ) e. { g e. B | ( g supp .0. ) e. A } <-> ( ( D X. { .0. } ) e. B /\ ( ( D X. { .0. } ) supp .0. ) e. A ) ) |
| 31 | 27 30 | bitrdi | |- ( ph -> ( ( D X. { .0. } ) e. U <-> ( ( D X. { .0. } ) e. B /\ ( ( D X. { .0. } ) supp .0. ) e. A ) ) ) |
| 32 | 13 26 31 | mpbir2and | |- ( ph -> ( D X. { .0. } ) e. U ) |
| 33 | 32 | ne0d | |- ( ph -> U =/= (/) ) |
| 34 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 35 | 10 | grpmgmd | |- ( ph -> R e. Mgm ) |
| 36 | 35 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> R e. Mgm ) |
| 37 | 9 | eleq2d | |- ( ph -> ( u e. U <-> u e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 38 | oveq1 | |- ( g = u -> ( g supp .0. ) = ( u supp .0. ) ) |
|
| 39 | 38 | eleq1d | |- ( g = u -> ( ( g supp .0. ) e. A <-> ( u supp .0. ) e. A ) ) |
| 40 | 39 | elrab | |- ( u e. { g e. B | ( g supp .0. ) e. A } <-> ( u e. B /\ ( u supp .0. ) e. A ) ) |
| 41 | 37 40 | bitrdi | |- ( ph -> ( u e. U <-> ( u e. B /\ ( u supp .0. ) e. A ) ) ) |
| 42 | 41 | biimpa | |- ( ( ph /\ u e. U ) -> ( u e. B /\ ( u supp .0. ) e. A ) ) |
| 43 | 42 | simpld | |- ( ( ph /\ u e. U ) -> u e. B ) |
| 44 | 43 | adantr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> u e. B ) |
| 45 | 9 | adantr | |- ( ( ph /\ u e. U ) -> U = { g e. B | ( g supp .0. ) e. A } ) |
| 46 | 45 | eleq2d | |- ( ( ph /\ u e. U ) -> ( v e. U <-> v e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 47 | oveq1 | |- ( g = v -> ( g supp .0. ) = ( v supp .0. ) ) |
|
| 48 | 47 | eleq1d | |- ( g = v -> ( ( g supp .0. ) e. A <-> ( v supp .0. ) e. A ) ) |
| 49 | 48 | elrab | |- ( v e. { g e. B | ( g supp .0. ) e. A } <-> ( v e. B /\ ( v supp .0. ) e. A ) ) |
| 50 | 46 49 | bitrdi | |- ( ( ph /\ u e. U ) -> ( v e. U <-> ( v e. B /\ ( v supp .0. ) e. A ) ) ) |
| 51 | 50 | biimpa | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( v e. B /\ ( v supp .0. ) e. A ) ) |
| 52 | 51 | simpld | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> v e. B ) |
| 53 | 1 2 34 36 44 52 | psraddcl | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( u ( +g ` S ) v ) e. B ) |
| 54 | ovexd | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u ( +g ` S ) v ) supp .0. ) e. _V ) |
|
| 55 | sseq2 | |- ( x = ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( y C_ x <-> y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) |
|
| 56 | 55 | imbi1d | |- ( x = ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( ( y C_ x -> y e. A ) <-> ( y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> y e. A ) ) ) |
| 57 | 56 | albidv | |- ( x = ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( A. y ( y C_ x -> y e. A ) <-> A. y ( y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> y e. A ) ) ) |
| 58 | 8 | expr | |- ( ( ph /\ x e. A ) -> ( y C_ x -> y e. A ) ) |
| 59 | 58 | alrimiv | |- ( ( ph /\ x e. A ) -> A. y ( y C_ x -> y e. A ) ) |
| 60 | 59 | ralrimiva | |- ( ph -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 61 | 60 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 62 | 42 | simprd | |- ( ( ph /\ u e. U ) -> ( u supp .0. ) e. A ) |
| 63 | 62 | adantr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( u supp .0. ) e. A ) |
| 64 | 51 | simprd | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( v supp .0. ) e. A ) |
| 65 | 7 | ralrimivva | |- ( ph -> A. x e. A A. y e. A ( x u. y ) e. A ) |
| 66 | 65 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> A. x e. A A. y e. A ( x u. y ) e. A ) |
| 67 | uneq1 | |- ( x = ( u supp .0. ) -> ( x u. y ) = ( ( u supp .0. ) u. y ) ) |
|
| 68 | 67 | eleq1d | |- ( x = ( u supp .0. ) -> ( ( x u. y ) e. A <-> ( ( u supp .0. ) u. y ) e. A ) ) |
| 69 | uneq2 | |- ( y = ( v supp .0. ) -> ( ( u supp .0. ) u. y ) = ( ( u supp .0. ) u. ( v supp .0. ) ) ) |
|
| 70 | 69 | eleq1d | |- ( y = ( v supp .0. ) -> ( ( ( u supp .0. ) u. y ) e. A <-> ( ( u supp .0. ) u. ( v supp .0. ) ) e. A ) ) |
| 71 | 68 70 | rspc2va | |- ( ( ( ( u supp .0. ) e. A /\ ( v supp .0. ) e. A ) /\ A. x e. A A. y e. A ( x u. y ) e. A ) -> ( ( u supp .0. ) u. ( v supp .0. ) ) e. A ) |
| 72 | 63 64 66 71 | syl21anc | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u supp .0. ) u. ( v supp .0. ) ) e. A ) |
| 73 | 57 61 72 | rspcdva | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> A. y ( y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> y e. A ) ) |
| 74 | 1 14 4 2 53 | psrelbas | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( u ( +g ` S ) v ) : D --> ( Base ` R ) ) |
| 75 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 76 | 1 2 75 34 44 52 | psradd | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( u ( +g ` S ) v ) = ( u oF ( +g ` R ) v ) ) |
| 77 | 76 | fveq1d | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u ( +g ` S ) v ) ` k ) = ( ( u oF ( +g ` R ) v ) ` k ) ) |
| 78 | 77 | adantr | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( ( u ( +g ` S ) v ) ` k ) = ( ( u oF ( +g ` R ) v ) ` k ) ) |
| 79 | eldifi | |- ( k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) -> k e. D ) |
|
| 80 | 1 14 4 2 43 | psrelbas | |- ( ( ph /\ u e. U ) -> u : D --> ( Base ` R ) ) |
| 81 | 80 | adantr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> u : D --> ( Base ` R ) ) |
| 82 | 81 | ffnd | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> u Fn D ) |
| 83 | 1 14 4 2 52 | psrelbas | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> v : D --> ( Base ` R ) ) |
| 84 | 83 | ffnd | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> v Fn D ) |
| 85 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 86 | 4 85 | rabex2 | |- D e. _V |
| 87 | 86 | a1i | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> D e. _V ) |
| 88 | inidm | |- ( D i^i D ) = D |
|
| 89 | eqidd | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. D ) -> ( u ` k ) = ( u ` k ) ) |
|
| 90 | eqidd | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. D ) -> ( v ` k ) = ( v ` k ) ) |
|
| 91 | 82 84 87 87 88 89 90 | ofval | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. D ) -> ( ( u oF ( +g ` R ) v ) ` k ) = ( ( u ` k ) ( +g ` R ) ( v ` k ) ) ) |
| 92 | 79 91 | sylan2 | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( ( u oF ( +g ` R ) v ) ` k ) = ( ( u ` k ) ( +g ` R ) ( v ` k ) ) ) |
| 93 | ssun1 | |- ( u supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) |
|
| 94 | sscon | |- ( ( u supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) C_ ( D \ ( u supp .0. ) ) ) |
|
| 95 | 93 94 | ax-mp | |- ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) C_ ( D \ ( u supp .0. ) ) |
| 96 | 95 | sseli | |- ( k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) -> k e. ( D \ ( u supp .0. ) ) ) |
| 97 | ssidd | |- ( ( ph /\ u e. U ) -> ( u supp .0. ) C_ ( u supp .0. ) ) |
|
| 98 | 86 | a1i | |- ( ( ph /\ u e. U ) -> D e. _V ) |
| 99 | 19 | a1i | |- ( ( ph /\ u e. U ) -> .0. e. _V ) |
| 100 | 80 97 98 99 | suppssr | |- ( ( ( ph /\ u e. U ) /\ k e. ( D \ ( u supp .0. ) ) ) -> ( u ` k ) = .0. ) |
| 101 | 100 | adantlr | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( u supp .0. ) ) ) -> ( u ` k ) = .0. ) |
| 102 | 96 101 | sylan2 | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( u ` k ) = .0. ) |
| 103 | ssun2 | |- ( v supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) |
|
| 104 | sscon | |- ( ( v supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) C_ ( D \ ( v supp .0. ) ) ) |
|
| 105 | 103 104 | ax-mp | |- ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) C_ ( D \ ( v supp .0. ) ) |
| 106 | 105 | sseli | |- ( k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) -> k e. ( D \ ( v supp .0. ) ) ) |
| 107 | ssidd | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( v supp .0. ) C_ ( v supp .0. ) ) |
|
| 108 | 19 | a1i | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> .0. e. _V ) |
| 109 | 83 107 87 108 | suppssr | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( v ` k ) = .0. ) |
| 110 | 106 109 | sylan2 | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( v ` k ) = .0. ) |
| 111 | 102 110 | oveq12d | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( ( u ` k ) ( +g ` R ) ( v ` k ) ) = ( .0. ( +g ` R ) .0. ) ) |
| 112 | 10 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> R e. Grp ) |
| 113 | 14 75 3 | grplid | |- ( ( R e. Grp /\ .0. e. ( Base ` R ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 114 | 112 15 113 | syl2anc2 | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 115 | 114 | adantr | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( .0. ( +g ` R ) .0. ) = .0. ) |
| 116 | 111 115 | eqtrd | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( ( u ` k ) ( +g ` R ) ( v ` k ) ) = .0. ) |
| 117 | 78 92 116 | 3eqtrd | |- ( ( ( ( ph /\ u e. U ) /\ v e. U ) /\ k e. ( D \ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) -> ( ( u ( +g ` S ) v ) ` k ) = .0. ) |
| 118 | 74 117 | suppss | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u ( +g ` S ) v ) supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) ) |
| 119 | sseq1 | |- ( y = ( ( u ( +g ` S ) v ) supp .0. ) -> ( y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) <-> ( ( u ( +g ` S ) v ) supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) ) ) |
|
| 120 | eleq1 | |- ( y = ( ( u ( +g ` S ) v ) supp .0. ) -> ( y e. A <-> ( ( u ( +g ` S ) v ) supp .0. ) e. A ) ) |
|
| 121 | 119 120 | imbi12d | |- ( y = ( ( u ( +g ` S ) v ) supp .0. ) -> ( ( y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> y e. A ) <-> ( ( ( u ( +g ` S ) v ) supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( ( u ( +g ` S ) v ) supp .0. ) e. A ) ) ) |
| 122 | 121 | spcgv | |- ( ( ( u ( +g ` S ) v ) supp .0. ) e. _V -> ( A. y ( y C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> y e. A ) -> ( ( ( u ( +g ` S ) v ) supp .0. ) C_ ( ( u supp .0. ) u. ( v supp .0. ) ) -> ( ( u ( +g ` S ) v ) supp .0. ) e. A ) ) ) |
| 123 | 54 73 118 122 | syl3c | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u ( +g ` S ) v ) supp .0. ) e. A ) |
| 124 | 9 | ad2antrr | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> U = { g e. B | ( g supp .0. ) e. A } ) |
| 125 | 124 | eleq2d | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u ( +g ` S ) v ) e. U <-> ( u ( +g ` S ) v ) e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 126 | oveq1 | |- ( g = ( u ( +g ` S ) v ) -> ( g supp .0. ) = ( ( u ( +g ` S ) v ) supp .0. ) ) |
|
| 127 | 126 | eleq1d | |- ( g = ( u ( +g ` S ) v ) -> ( ( g supp .0. ) e. A <-> ( ( u ( +g ` S ) v ) supp .0. ) e. A ) ) |
| 128 | 127 | elrab | |- ( ( u ( +g ` S ) v ) e. { g e. B | ( g supp .0. ) e. A } <-> ( ( u ( +g ` S ) v ) e. B /\ ( ( u ( +g ` S ) v ) supp .0. ) e. A ) ) |
| 129 | 125 128 | bitrdi | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( ( u ( +g ` S ) v ) e. U <-> ( ( u ( +g ` S ) v ) e. B /\ ( ( u ( +g ` S ) v ) supp .0. ) e. A ) ) ) |
| 130 | 53 123 129 | mpbir2and | |- ( ( ( ph /\ u e. U ) /\ v e. U ) -> ( u ( +g ` S ) v ) e. U ) |
| 131 | 130 | ralrimiva | |- ( ( ph /\ u e. U ) -> A. v e. U ( u ( +g ` S ) v ) e. U ) |
| 132 | 1 5 10 | psrgrp | |- ( ph -> S e. Grp ) |
| 133 | eqid | |- ( invg ` S ) = ( invg ` S ) |
|
| 134 | 2 133 | grpinvcl | |- ( ( S e. Grp /\ u e. B ) -> ( ( invg ` S ) ` u ) e. B ) |
| 135 | 132 43 134 | syl2an2r | |- ( ( ph /\ u e. U ) -> ( ( invg ` S ) ` u ) e. B ) |
| 136 | ovexd | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` S ) ` u ) supp .0. ) e. _V ) |
|
| 137 | sseq2 | |- ( x = ( u supp .0. ) -> ( y C_ x <-> y C_ ( u supp .0. ) ) ) |
|
| 138 | 137 | imbi1d | |- ( x = ( u supp .0. ) -> ( ( y C_ x -> y e. A ) <-> ( y C_ ( u supp .0. ) -> y e. A ) ) ) |
| 139 | 138 | albidv | |- ( x = ( u supp .0. ) -> ( A. y ( y C_ x -> y e. A ) <-> A. y ( y C_ ( u supp .0. ) -> y e. A ) ) ) |
| 140 | 60 | adantr | |- ( ( ph /\ u e. U ) -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 141 | 139 140 62 | rspcdva | |- ( ( ph /\ u e. U ) -> A. y ( y C_ ( u supp .0. ) -> y e. A ) ) |
| 142 | 5 | adantr | |- ( ( ph /\ u e. U ) -> I e. W ) |
| 143 | 10 | adantr | |- ( ( ph /\ u e. U ) -> R e. Grp ) |
| 144 | eqid | |- ( invg ` R ) = ( invg ` R ) |
|
| 145 | 1 142 143 4 144 2 133 43 | psrneg | |- ( ( ph /\ u e. U ) -> ( ( invg ` S ) ` u ) = ( ( invg ` R ) o. u ) ) |
| 146 | 145 | oveq1d | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` S ) ` u ) supp .0. ) = ( ( ( invg ` R ) o. u ) supp .0. ) ) |
| 147 | 14 144 | grpinvfn | |- ( invg ` R ) Fn ( Base ` R ) |
| 148 | 147 | a1i | |- ( ( ph /\ u e. U ) -> ( invg ` R ) Fn ( Base ` R ) ) |
| 149 | 3 144 | grpinvid | |- ( R e. Grp -> ( ( invg ` R ) ` .0. ) = .0. ) |
| 150 | 143 149 | syl | |- ( ( ph /\ u e. U ) -> ( ( invg ` R ) ` .0. ) = .0. ) |
| 151 | 148 80 98 99 150 | suppcoss | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` R ) o. u ) supp .0. ) C_ ( u supp .0. ) ) |
| 152 | 146 151 | eqsstrd | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` S ) ` u ) supp .0. ) C_ ( u supp .0. ) ) |
| 153 | sseq1 | |- ( y = ( ( ( invg ` S ) ` u ) supp .0. ) -> ( y C_ ( u supp .0. ) <-> ( ( ( invg ` S ) ` u ) supp .0. ) C_ ( u supp .0. ) ) ) |
|
| 154 | eleq1 | |- ( y = ( ( ( invg ` S ) ` u ) supp .0. ) -> ( y e. A <-> ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) ) |
|
| 155 | 153 154 | imbi12d | |- ( y = ( ( ( invg ` S ) ` u ) supp .0. ) -> ( ( y C_ ( u supp .0. ) -> y e. A ) <-> ( ( ( ( invg ` S ) ` u ) supp .0. ) C_ ( u supp .0. ) -> ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) ) ) |
| 156 | 155 | spcgv | |- ( ( ( ( invg ` S ) ` u ) supp .0. ) e. _V -> ( A. y ( y C_ ( u supp .0. ) -> y e. A ) -> ( ( ( ( invg ` S ) ` u ) supp .0. ) C_ ( u supp .0. ) -> ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) ) ) |
| 157 | 136 141 152 156 | syl3c | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) |
| 158 | 45 | eleq2d | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` S ) ` u ) e. U <-> ( ( invg ` S ) ` u ) e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 159 | oveq1 | |- ( g = ( ( invg ` S ) ` u ) -> ( g supp .0. ) = ( ( ( invg ` S ) ` u ) supp .0. ) ) |
|
| 160 | 159 | eleq1d | |- ( g = ( ( invg ` S ) ` u ) -> ( ( g supp .0. ) e. A <-> ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) ) |
| 161 | 160 | elrab | |- ( ( ( invg ` S ) ` u ) e. { g e. B | ( g supp .0. ) e. A } <-> ( ( ( invg ` S ) ` u ) e. B /\ ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) ) |
| 162 | 158 161 | bitrdi | |- ( ( ph /\ u e. U ) -> ( ( ( invg ` S ) ` u ) e. U <-> ( ( ( invg ` S ) ` u ) e. B /\ ( ( ( invg ` S ) ` u ) supp .0. ) e. A ) ) ) |
| 163 | 135 157 162 | mpbir2and | |- ( ( ph /\ u e. U ) -> ( ( invg ` S ) ` u ) e. U ) |
| 164 | 131 163 | jca | |- ( ( ph /\ u e. U ) -> ( A. v e. U ( u ( +g ` S ) v ) e. U /\ ( ( invg ` S ) ` u ) e. U ) ) |
| 165 | 164 | ralrimiva | |- ( ph -> A. u e. U ( A. v e. U ( u ( +g ` S ) v ) e. U /\ ( ( invg ` S ) ` u ) e. U ) ) |
| 166 | 2 34 133 | issubg2 | |- ( S e. Grp -> ( U e. ( SubGrp ` S ) <-> ( U C_ B /\ U =/= (/) /\ A. u e. U ( A. v e. U ( u ( +g ` S ) v ) e. U /\ ( ( invg ` S ) ` u ) e. U ) ) ) ) |
| 167 | 132 166 | syl | |- ( ph -> ( U e. ( SubGrp ` S ) <-> ( U C_ B /\ U =/= (/) /\ A. u e. U ( A. v e. U ( u ( +g ` S ) v ) e. U /\ ( ( invg ` S ) ` u ) e. U ) ) ) ) |
| 168 | 12 33 165 167 | mpbir3and | |- ( ph -> U e. ( SubGrp ` S ) ) |