This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | ||
| psrneg.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| psrneg.i | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| psrneg.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| psrneg.m | ⊢ 𝑀 = ( invg ‘ 𝑆 ) | ||
| psrneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | psrneg | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrgrp.s | ⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | psrgrp.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | psrgrp.r | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) | |
| 4 | psrneg.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 5 | psrneg.i | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 6 | psrneg.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 7 | psrneg.m | ⊢ 𝑀 = ( invg ‘ 𝑆 ) | |
| 8 | psrneg.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 10 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 11 | 1 2 3 4 5 6 8 9 10 | psrlinv | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 13 | 1 2 3 4 9 12 | psr0 | ⊢ ( 𝜑 → ( 0g ‘ 𝑆 ) = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
| 14 | 11 13 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) |
| 15 | 1 2 3 | psrgrp | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 16 | 1 2 3 4 5 6 8 | psrnegcl | ⊢ ( 𝜑 → ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) |
| 17 | 6 10 12 7 | grpinvid2 | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ∘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ↔ ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) ) |
| 18 | 15 8 16 17 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ↔ ( ( 𝑁 ∘ 𝑋 ) ( +g ‘ 𝑆 ) 𝑋 ) = ( 0g ‘ 𝑆 ) ) ) |
| 19 | 14 18 | mpbird | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ∘ 𝑋 ) ) |