This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of the composition of two functions is a subset of the support of the inner function if the outer function preserves zero. Compare suppssfv , which has a sethood condition on A instead of B . (Contributed by SN, 25-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppcoss.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| suppcoss.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | ||
| suppcoss.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| suppcoss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| suppcoss.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = 𝑍 ) | ||
| Assertion | suppcoss | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ⊆ ( 𝐺 supp 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppcoss.f | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | suppcoss.g | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 3 | suppcoss.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 4 | suppcoss.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 5 | suppcoss.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑌 ) = 𝑍 ) | |
| 6 | dffn3 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 ⟶ ran 𝐹 ) | |
| 7 | 1 6 | sylib | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
| 8 | 7 2 | fcod | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐵 ⟶ ran 𝐹 ) |
| 9 | eldif | ⊢ ( 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp 𝑌 ) ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑌 ) ) ) | |
| 10 | 2 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 11 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑘 ∈ ( 𝐺 supp 𝑌 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ) | |
| 12 | 10 3 4 11 | syl3anc | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐺 supp 𝑌 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ) |
| 13 | 12 | notbid | ⊢ ( 𝜑 → ( ¬ 𝑘 ∈ ( 𝐺 supp 𝑌 ) ↔ ¬ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ) |
| 14 | 13 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑌 ) ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ) ) |
| 15 | annotanannot | ⊢ ( ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) | |
| 16 | 14 15 | bitrdi | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ ( 𝐺 supp 𝑌 ) ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ) |
| 17 | 9 16 | bitrid | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp 𝑌 ) ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ) ) |
| 18 | nne | ⊢ ( ¬ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ↔ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) | |
| 19 | 18 | anbi2i | ⊢ ( ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) |
| 20 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 21 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → 𝑘 ∈ 𝐵 ) | |
| 22 | 20 21 | fvco3d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 23 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → ( 𝐺 ‘ 𝑘 ) = 𝑌 ) | |
| 24 | 23 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 25 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → ( 𝐹 ‘ 𝑌 ) = 𝑍 ) |
| 26 | 22 24 25 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 27 | 26 | ex | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑘 ) = 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = 𝑍 ) ) |
| 28 | 19 27 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐵 ∧ ¬ ( 𝐺 ‘ 𝑘 ) ≠ 𝑌 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = 𝑍 ) ) |
| 29 | 17 28 | sylbid | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp 𝑌 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = 𝑍 ) ) |
| 30 | 29 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑘 ) = 𝑍 ) |
| 31 | 8 30 | suppss | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) supp 𝑍 ) ⊆ ( 𝐺 supp 𝑌 ) ) |