This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . Any minimal point is less than S away from A . (Contributed by Mario Carneiro, 9-May-2014) (Revised by AV, 4-Oct-2020) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| Assertion | minvecolem6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑈 ∈ NrmCVec ) |
| 15 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝐴 ∈ 𝑋 ) |
| 16 | inss1 | ⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) | |
| 17 | 16 6 | sselid | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 18 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 19 | 1 4 18 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 20 | 13 17 19 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 21 | 20 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑥 ∈ 𝑋 ) |
| 22 | 1 2 3 8 | imsdval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 23 | 14 15 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝐷 𝑥 ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 | minvecolem1 | ⊢ ( 𝜑 → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 27 | 26 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ⊆ ℝ ) |
| 28 | 26 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑅 ≠ ∅ ) |
| 29 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ∈ ℝ ) | |
| 30 | 26 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) |
| 31 | breq1 | ⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤 ) ) | |
| 32 | 31 | ralbidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 33 | 32 | rspcev | ⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 34 | 29 30 33 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) |
| 35 | infrecl | ⊢ ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) | |
| 36 | 27 28 34 35 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → inf ( 𝑅 , ℝ , < ) ∈ ℝ ) |
| 37 | 11 36 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 𝑆 ∈ ℝ ) |
| 38 | 37 | resqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℝ ) |
| 39 | 38 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑆 ↑ 2 ) ∈ ℂ ) |
| 40 | 39 | addridd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑆 ↑ 2 ) + 0 ) = ( 𝑆 ↑ 2 ) ) |
| 41 | 24 40 | breq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
| 42 | 1 2 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) |
| 43 | 14 15 21 42 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) |
| 44 | 1 3 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) |
| 45 | 14 43 44 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) |
| 46 | 1 3 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝑀 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 47 | 14 43 46 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ) |
| 48 | infregelb | ⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ 0 ∈ ℝ ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) | |
| 49 | 27 28 34 29 48 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( 0 ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 0 ≤ 𝑤 ) ) |
| 50 | 30 49 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ inf ( 𝑅 , ℝ , < ) ) |
| 51 | 50 11 | breqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → 0 ≤ 𝑆 ) |
| 52 | 45 37 47 51 | le2sqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ↑ 2 ) ≤ ( 𝑆 ↑ 2 ) ) ) |
| 53 | 11 | breq2i | ⊢ ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ) |
| 54 | infregelb | ⊢ ( ( ( 𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ) ∧ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ∈ ℝ ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) | |
| 55 | 27 28 34 45 54 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ inf ( 𝑅 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 56 | 53 55 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑆 ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 57 | 41 52 56 | 3bitr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) ) |
| 58 | 10 | raleqi | ⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ) |
| 59 | fvex | ⊢ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V | |
| 60 | 59 | rgenw | ⊢ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V |
| 61 | eqid | ⊢ ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 62 | breq2 | ⊢ ( 𝑤 = ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) | |
| 63 | 61 62 | ralrnmptw | ⊢ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 64 | 60 63 | ax-mp | ⊢ ( ∀ 𝑤 ∈ ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 65 | 58 64 | bitri | ⊢ ( ∀ 𝑤 ∈ 𝑅 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ 𝑤 ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 66 | 57 65 | bitrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |