This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmulc2re.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfmulc2re.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mbfmulc2lem.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | ||
| Assertion | mbfmulc2lem | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmulc2re.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfmulc2re.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mbfmulc2lem.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ ) | |
| 4 | remulcl | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 6 | fconst6g | ⊢ ( 𝐵 ∈ ℝ → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℝ ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℝ ) |
| 8 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 9 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → dom 𝐹 ∈ dom vol ) |
| 11 | 8 10 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 12 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 13 | 5 7 3 11 11 12 | off | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 15 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → 𝐴 ∈ dom vol ) |
| 16 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) | |
| 17 | 16 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ* ) |
| 18 | elioopnf | ⊢ ( 𝑦 ∈ ℝ* → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 20 | 13 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 21 | 20 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 22 | 21 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 23 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 24 | 23 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 25 | 24 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 26 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) | |
| 27 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐴 ∈ dom vol ) |
| 28 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 29 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 30 | 29 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 Fn 𝐴 ) |
| 31 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 32 | 27 28 30 31 | ofc1 | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 33 | 26 32 | mpdan | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 34 | 33 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 35 | 33 21 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ∈ ℝ ) |
| 36 | 16 35 | ltnegd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ↔ - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ) ) |
| 37 | 28 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
| 38 | 24 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 39 | 37 38 | mulneg1d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) = - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 40 | 39 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ) ) |
| 41 | 16 | renegcld | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → - 𝑦 ∈ ℝ ) |
| 42 | 28 | renegcld | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → - 𝐵 ∈ ℝ ) |
| 43 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 < 0 ) | |
| 44 | 28 | lt0neg1d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐵 < 0 ↔ 0 < - 𝐵 ) ) |
| 45 | 43 44 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 0 < - 𝐵 ) |
| 46 | ltmuldiv2 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ - 𝑦 ∈ ℝ ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ) ) | |
| 47 | 24 41 42 45 46 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < - 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ) ) |
| 48 | 36 40 47 | 3bitr2rd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 49 | 16 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℂ ) |
| 50 | 43 | lt0ne0d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ≠ 0 ) |
| 51 | 49 37 50 | div2negd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝑦 / - 𝐵 ) = ( 𝑦 / 𝐵 ) ) |
| 52 | 51 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) < ( - 𝑦 / - 𝐵 ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 53 | 34 48 52 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 54 | 16 28 50 | redivcld | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
| 55 | 54 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ* ) |
| 56 | elioomnf | ⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 58 | 25 53 57 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 59 | 19 22 58 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 60 | 59 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 61 | 60 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 62 | 13 | ffnd | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
| 64 | elpreima | ⊢ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) | |
| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 66 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn 𝐴 ) |
| 68 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) | |
| 69 | 67 68 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 70 | 61 65 69 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 71 | 70 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 72 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) | |
| 73 | 1 3 72 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 74 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 75 | 71 74 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 76 | elioomnf | ⊢ ( 𝑦 ∈ ℝ* → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) | |
| 77 | 17 76 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 78 | 21 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 79 | 24 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 80 | 33 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 81 | 39 | breq2d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ↔ - 𝑦 < - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 82 | 51 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
| 83 | ltdivmul | ⊢ ( ( - 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( - 𝐵 ∈ ℝ ∧ 0 < - 𝐵 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 84 | 41 24 42 45 83 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( - 𝑦 / - 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 85 | 82 84 | bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ - 𝑦 < ( - 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 86 | 35 16 | ltnegd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ - 𝑦 < - ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 87 | 81 85 86 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 88 | 80 87 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
| 89 | elioopnf | ⊢ ( ( 𝑦 / 𝐵 ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 90 | 55 89 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 91 | 79 88 90 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 92 | 77 78 91 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 93 | 92 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 94 | 93 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 95 | elpreima | ⊢ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) | |
| 96 | 63 95 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 97 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) | |
| 98 | 67 97 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 99 | 94 96 98 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 100 | 99 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 101 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) | |
| 102 | 1 3 101 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 103 | 102 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 104 | 100 103 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝐵 < 0 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 105 | 14 15 75 104 | ismbf2d | ⊢ ( ( 𝜑 ∧ 𝐵 < 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| 106 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐴 ∈ dom vol ) |
| 107 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐹 : 𝐴 ⟶ ℝ ) |
| 108 | simpr | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) | |
| 109 | 0cn | ⊢ 0 ∈ ℂ | |
| 110 | 108 109 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 𝐵 ∈ ℂ ) |
| 111 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → 0 ∈ ℂ ) | |
| 112 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → 𝐵 = 0 ) | |
| 113 | 112 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 114 | mul02lem2 | ⊢ ( 𝑥 ∈ ℝ → ( 0 · 𝑥 ) = 0 ) | |
| 115 | 114 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 0 · 𝑥 ) = 0 ) |
| 116 | 113 115 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐵 = 0 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐵 · 𝑥 ) = 0 ) |
| 117 | 106 107 110 111 116 | caofid2 | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) = ( 𝐴 × { 0 } ) ) |
| 118 | mbfconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ 0 ∈ ℂ ) → ( 𝐴 × { 0 } ) ∈ MblFn ) | |
| 119 | 106 109 118 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝐴 × { 0 } ) ∈ MblFn ) |
| 120 | 117 119 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| 121 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 122 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → 𝐴 ∈ dom vol ) |
| 123 | simprl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) | |
| 124 | 123 | rexrd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ* ) |
| 125 | 124 18 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 126 | 20 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ) |
| 127 | 126 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ) ) ) |
| 128 | 23 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 129 | 128 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 130 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 131 | 11 2 66 130 | ofc1 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 132 | 131 | ad2ant2rl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) = ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) |
| 133 | 132 | breq2d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 134 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
| 135 | simplr | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 0 < 𝐵 ) | |
| 136 | ltdivmul | ⊢ ( ( 𝑦 ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) | |
| 137 | 123 128 134 135 136 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 < ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 138 | 133 137 | bitr4d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) |
| 139 | 134 135 | elrpd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → 𝐵 ∈ ℝ+ ) |
| 140 | 123 139 | rerpdivcld | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ ) |
| 141 | 140 | rexrd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 / 𝐵 ) ∈ ℝ* ) |
| 142 | 141 89 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑦 / 𝐵 ) < ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 143 | 129 138 142 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 < ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 144 | 125 127 143 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 145 | 144 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 146 | 145 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 147 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) Fn 𝐴 ) |
| 148 | 147 64 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 149 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → 𝐹 Fn 𝐴 ) |
| 150 | 149 97 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 151 | 146 148 150 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) ) |
| 152 | 151 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) = ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ) |
| 153 | 102 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( 𝑦 / 𝐵 ) (,) +∞ ) ) ∈ dom vol ) |
| 154 | 152 153 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 155 | 124 76 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 156 | 126 | biantrurd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ℝ ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ) ) ) |
| 157 | ltmuldiv2 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) | |
| 158 | 128 123 134 135 157 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 159 | 132 | breq1d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐵 · ( 𝐹 ‘ 𝑧 ) ) < 𝑦 ) ) |
| 160 | 141 56 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) ) |
| 161 | 128 160 | mpbirand | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ↔ ( 𝐹 ‘ 𝑧 ) < ( 𝑦 / 𝐵 ) ) ) |
| 162 | 158 159 161 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) < 𝑦 ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 163 | 155 156 162 | 3bitr2d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 164 | 163 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 165 | 164 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 166 | 147 95 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ‘ 𝑧 ) ∈ ( -∞ (,) 𝑦 ) ) ) ) |
| 167 | 149 68 | syl | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ↔ ( 𝑧 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 168 | 165 166 167 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ↔ 𝑧 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) ) |
| 169 | 168 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ) |
| 170 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑦 / 𝐵 ) ) ) ∈ dom vol ) |
| 171 | 169 170 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 0 < 𝐵 ) ∧ 𝑦 ∈ ℝ ) → ( ◡ ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 172 | 121 122 154 171 | ismbf2d | ⊢ ( ( 𝜑 ∧ 0 < 𝐵 ) → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| 173 | 0re | ⊢ 0 ∈ ℝ | |
| 174 | lttri4 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) | |
| 175 | 2 173 174 | sylancl | ⊢ ( 𝜑 → ( 𝐵 < 0 ∨ 𝐵 = 0 ∨ 0 < 𝐵 ) ) |
| 176 | 105 120 172 175 | mpjao3dan | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |