This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfconst | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 2 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 3 | 1 2 | fmptd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ) |
| 4 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → 𝐴 ⊆ ℝ ) |
| 6 | cnex | ⊢ ℂ ∈ V | |
| 7 | reex | ⊢ ℝ ∈ V | |
| 8 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ) | |
| 9 | 6 7 8 | mpanl12 | ⊢ ( ( ( 𝐴 × { 𝐵 } ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ) |
| 10 | 3 5 9 | syl2anc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ) |
| 11 | 2 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 12 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 13 | 12 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℜ : ℂ ⟶ ℝ ) |
| 14 | 13 | feqmptd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℜ = ( 𝑦 ∈ ℂ ↦ ( ℜ ‘ 𝑦 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( ℜ ‘ 𝑦 ) = ( ℜ ‘ 𝐵 ) ) | |
| 16 | 1 11 14 15 | fmptco | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) ) |
| 17 | fconstmpt | ⊢ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐵 ) ) | |
| 18 | 16 17 | eqtr4di | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) ) |
| 19 | 18 | cnveqd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) = ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) ) |
| 20 | 19 | imaeq1d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) = ( ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ) |
| 21 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 22 | mbfconstlem | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℜ ‘ 𝐵 ) ∈ ℝ ) → ( ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( 𝐴 × { ( ℜ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) |
| 24 | 20 23 | eqeltrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) |
| 25 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 26 | 25 | a1i | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℑ : ℂ ⟶ ℝ ) |
| 27 | 26 | feqmptd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ℑ = ( 𝑦 ∈ ℂ ↦ ( ℑ ‘ 𝑦 ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑦 = 𝐵 → ( ℑ ‘ 𝑦 ) = ( ℑ ‘ 𝐵 ) ) | |
| 29 | 1 11 27 28 | fmptco | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) ) |
| 30 | fconstmpt | ⊢ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐵 ) ) | |
| 31 | 29 30 | eqtr4di | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) ) |
| 32 | 31 | cnveqd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) = ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) ) |
| 33 | 32 | imaeq1d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) = ( ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ) |
| 34 | imcl | ⊢ ( 𝐵 ∈ ℂ → ( ℑ ‘ 𝐵 ) ∈ ℝ ) | |
| 35 | mbfconstlem | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℑ ‘ 𝐵 ) ∈ ℝ ) → ( ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) | |
| 36 | 34 35 | sylan2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( 𝐴 × { ( ℑ ‘ 𝐵 ) } ) “ 𝑦 ) ∈ dom vol ) |
| 37 | 33 36 | eqeltrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) |
| 38 | 24 37 | jca | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) |
| 39 | 38 | ralrimivw | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ∀ 𝑦 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) |
| 40 | ismbf1 | ⊢ ( ( 𝐴 × { 𝐵 } ) ∈ MblFn ↔ ( ( 𝐴 × { 𝐵 } ) ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑦 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐴 × { 𝐵 } ) ) “ 𝑦 ) ∈ dom vol ) ) ) | |
| 41 | 10 39 40 | sylanbrc | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ ) → ( 𝐴 × { 𝐵 } ) ∈ MblFn ) |