This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmulc2re.1 | |- ( ph -> F e. MblFn ) |
|
| mbfmulc2re.2 | |- ( ph -> B e. RR ) |
||
| mbfmulc2lem.3 | |- ( ph -> F : A --> RR ) |
||
| Assertion | mbfmulc2lem | |- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmulc2re.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfmulc2re.2 | |- ( ph -> B e. RR ) |
|
| 3 | mbfmulc2lem.3 | |- ( ph -> F : A --> RR ) |
|
| 4 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 5 | 4 | adantl | |- ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) |
| 6 | fconst6g | |- ( B e. RR -> ( A X. { B } ) : A --> RR ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( A X. { B } ) : A --> RR ) |
| 8 | 3 | fdmd | |- ( ph -> dom F = A ) |
| 9 | mbfdm | |- ( F e. MblFn -> dom F e. dom vol ) |
|
| 10 | 1 9 | syl | |- ( ph -> dom F e. dom vol ) |
| 11 | 8 10 | eqeltrrd | |- ( ph -> A e. dom vol ) |
| 12 | inidm | |- ( A i^i A ) = A |
|
| 13 | 5 7 3 11 11 12 | off | |- ( ph -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
| 14 | 13 | adantr | |- ( ( ph /\ B < 0 ) -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
| 15 | 11 | adantr | |- ( ( ph /\ B < 0 ) -> A e. dom vol ) |
| 16 | simprl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR ) |
|
| 17 | 16 | rexrd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR* ) |
| 18 | elioopnf | |- ( y e. RR* -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
|
| 19 | 17 18 | syl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 20 | 13 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
| 21 | 20 | ad2ant2rl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
| 22 | 21 | biantrurd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 23 | 3 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( F ` z ) e. RR ) |
| 24 | 23 | ad2ant2rl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. RR ) |
| 25 | 24 | biantrurd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( y / B ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 26 | simprr | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> z e. A ) |
|
| 27 | 11 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> A e. dom vol ) |
| 28 | 2 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR ) |
| 29 | 3 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> F : A --> RR ) |
| 30 | 29 | ffnd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> F Fn A ) |
| 31 | eqidd | |- ( ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
|
| 32 | 27 28 30 31 | ofc1 | |- ( ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 33 | 26 32 | mpdan | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 34 | 33 | breq2d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 35 | 33 21 | eqeltrrd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( B x. ( F ` z ) ) e. RR ) |
| 36 | 16 35 | ltnegd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( B x. ( F ` z ) ) <-> -u ( B x. ( F ` z ) ) < -u y ) ) |
| 37 | 28 | recnd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B e. CC ) |
| 38 | 24 | recnd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. CC ) |
| 39 | 37 38 | mulneg1d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u B x. ( F ` z ) ) = -u ( B x. ( F ` z ) ) ) |
| 40 | 39 | breq1d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> -u ( B x. ( F ` z ) ) < -u y ) ) |
| 41 | 16 | renegcld | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> -u y e. RR ) |
| 42 | 28 | renegcld | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> -u B e. RR ) |
| 43 | simplr | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B < 0 ) |
|
| 44 | 28 | lt0neg1d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( B < 0 <-> 0 < -u B ) ) |
| 45 | 43 44 | mpbid | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> 0 < -u B ) |
| 46 | ltmuldiv2 | |- ( ( ( F ` z ) e. RR /\ -u y e. RR /\ ( -u B e. RR /\ 0 < -u B ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> ( F ` z ) < ( -u y / -u B ) ) ) |
|
| 47 | 24 41 42 45 46 | syl112anc | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u B x. ( F ` z ) ) < -u y <-> ( F ` z ) < ( -u y / -u B ) ) ) |
| 48 | 36 40 47 | 3bitr2rd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( -u y / -u B ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 49 | 16 | recnd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> y e. CC ) |
| 50 | 43 | lt0ne0d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> B =/= 0 ) |
| 51 | 49 37 50 | div2negd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u y / -u B ) = ( y / B ) ) |
| 52 | 51 | breq2d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) < ( -u y / -u B ) <-> ( F ` z ) < ( y / B ) ) ) |
| 53 | 34 48 52 | 3bitr2d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) < ( y / B ) ) ) |
| 54 | 16 28 50 | redivcld | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR ) |
| 55 | 54 | rexrd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR* ) |
| 56 | elioomnf | |- ( ( y / B ) e. RR* -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 58 | 25 53 57 | 3bitr4d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 59 | 19 22 58 | 3bitr2d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 60 | 59 | anassrs | |- ( ( ( ( ph /\ B < 0 ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 61 | 60 | pm5.32da | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 62 | 13 | ffnd | |- ( ph -> ( ( A X. { B } ) oF x. F ) Fn A ) |
| 63 | 62 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( A X. { B } ) oF x. F ) Fn A ) |
| 64 | elpreima | |- ( ( ( A X. { B } ) oF x. F ) Fn A -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
|
| 65 | 63 64 | syl | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
| 66 | 3 | ffnd | |- ( ph -> F Fn A ) |
| 67 | 66 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> F Fn A ) |
| 68 | elpreima | |- ( F Fn A -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
|
| 69 | 67 68 | syl | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 70 | 61 65 69 | 3bitr4d | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> z e. ( `' F " ( -oo (,) ( y / B ) ) ) ) ) |
| 71 | 70 | eqrdv | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) = ( `' F " ( -oo (,) ( y / B ) ) ) ) |
| 72 | mbfima | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
|
| 73 | 1 3 72 | syl2anc | |- ( ph -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 74 | 73 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 75 | 71 74 | eqeltrd | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) e. dom vol ) |
| 76 | elioomnf | |- ( y e. RR* -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
|
| 77 | 17 76 | syl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 78 | 21 | biantrurd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 79 | 24 | biantrurd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 80 | 33 | breq1d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( B x. ( F ` z ) ) < y ) ) |
| 81 | 39 | breq2d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( -u y < ( -u B x. ( F ` z ) ) <-> -u y < -u ( B x. ( F ` z ) ) ) ) |
| 82 | 51 | breq1d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> ( y / B ) < ( F ` z ) ) ) |
| 83 | ltdivmul | |- ( ( -u y e. RR /\ ( F ` z ) e. RR /\ ( -u B e. RR /\ 0 < -u B ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
|
| 84 | 41 24 42 45 83 | syl112anc | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( -u y / -u B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
| 85 | 82 84 | bitr3d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> -u y < ( -u B x. ( F ` z ) ) ) ) |
| 86 | 35 16 | ltnegd | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( B x. ( F ` z ) ) < y <-> -u y < -u ( B x. ( F ` z ) ) ) ) |
| 87 | 81 85 86 | 3bitr4d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( B x. ( F ` z ) ) < y ) ) |
| 88 | 80 87 | bitr4d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( y / B ) < ( F ` z ) ) ) |
| 89 | elioopnf | |- ( ( y / B ) e. RR* -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
|
| 90 | 55 89 | syl | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 91 | 79 88 90 | 3bitr4d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 92 | 77 78 91 | 3bitr2d | |- ( ( ( ph /\ B < 0 ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 93 | 92 | anassrs | |- ( ( ( ( ph /\ B < 0 ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 94 | 93 | pm5.32da | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 95 | elpreima | |- ( ( ( A X. { B } ) oF x. F ) Fn A -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
|
| 96 | 63 95 | syl | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
| 97 | elpreima | |- ( F Fn A -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
|
| 98 | 67 97 | syl | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 99 | 94 96 98 | 3bitr4d | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> z e. ( `' F " ( ( y / B ) (,) +oo ) ) ) ) |
| 100 | 99 | eqrdv | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) = ( `' F " ( ( y / B ) (,) +oo ) ) ) |
| 101 | mbfima | |- ( ( F e. MblFn /\ F : A --> RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
|
| 102 | 1 3 101 | syl2anc | |- ( ph -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 103 | 102 | ad2antrr | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 104 | 100 103 | eqeltrd | |- ( ( ( ph /\ B < 0 ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) e. dom vol ) |
| 105 | 14 15 75 104 | ismbf2d | |- ( ( ph /\ B < 0 ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| 106 | 11 | adantr | |- ( ( ph /\ B = 0 ) -> A e. dom vol ) |
| 107 | 3 | adantr | |- ( ( ph /\ B = 0 ) -> F : A --> RR ) |
| 108 | simpr | |- ( ( ph /\ B = 0 ) -> B = 0 ) |
|
| 109 | 0cn | |- 0 e. CC |
|
| 110 | 108 109 | eqeltrdi | |- ( ( ph /\ B = 0 ) -> B e. CC ) |
| 111 | 0cnd | |- ( ( ph /\ B = 0 ) -> 0 e. CC ) |
|
| 112 | simplr | |- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> B = 0 ) |
|
| 113 | 112 | oveq1d | |- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( B x. x ) = ( 0 x. x ) ) |
| 114 | mul02lem2 | |- ( x e. RR -> ( 0 x. x ) = 0 ) |
|
| 115 | 114 | adantl | |- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 116 | 113 115 | eqtrd | |- ( ( ( ph /\ B = 0 ) /\ x e. RR ) -> ( B x. x ) = 0 ) |
| 117 | 106 107 110 111 116 | caofid2 | |- ( ( ph /\ B = 0 ) -> ( ( A X. { B } ) oF x. F ) = ( A X. { 0 } ) ) |
| 118 | mbfconst | |- ( ( A e. dom vol /\ 0 e. CC ) -> ( A X. { 0 } ) e. MblFn ) |
|
| 119 | 106 109 118 | sylancl | |- ( ( ph /\ B = 0 ) -> ( A X. { 0 } ) e. MblFn ) |
| 120 | 117 119 | eqeltrd | |- ( ( ph /\ B = 0 ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| 121 | 13 | adantr | |- ( ( ph /\ 0 < B ) -> ( ( A X. { B } ) oF x. F ) : A --> RR ) |
| 122 | 11 | adantr | |- ( ( ph /\ 0 < B ) -> A e. dom vol ) |
| 123 | simprl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR ) |
|
| 124 | 123 | rexrd | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> y e. RR* ) |
| 125 | 124 18 | syl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 126 | 20 | ad2ant2rl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR ) |
| 127 | 126 | biantrurd | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ y < ( ( ( A X. { B } ) oF x. F ) ` z ) ) ) ) |
| 128 | 23 | ad2ant2rl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( F ` z ) e. RR ) |
| 129 | 128 | biantrurd | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 130 | eqidd | |- ( ( ph /\ z e. A ) -> ( F ` z ) = ( F ` z ) ) |
|
| 131 | 11 2 66 130 | ofc1 | |- ( ( ph /\ z e. A ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 132 | 131 | ad2ant2rl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( A X. { B } ) oF x. F ) ` z ) = ( B x. ( F ` z ) ) ) |
| 133 | 132 | breq2d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 134 | 2 | ad2antrr | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR ) |
| 135 | simplr | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> 0 < B ) |
|
| 136 | ltdivmul | |- ( ( y e. RR /\ ( F ` z ) e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( y / B ) < ( F ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
|
| 137 | 123 128 134 135 136 | syl112anc | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( y / B ) < ( F ` z ) <-> y < ( B x. ( F ` z ) ) ) ) |
| 138 | 133 137 | bitr4d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( y / B ) < ( F ` z ) ) ) |
| 139 | 134 135 | elrpd | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> B e. RR+ ) |
| 140 | 123 139 | rerpdivcld | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR ) |
| 141 | 140 | rexrd | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y / B ) e. RR* ) |
| 142 | 141 89 | syl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( ( y / B ) (,) +oo ) <-> ( ( F ` z ) e. RR /\ ( y / B ) < ( F ` z ) ) ) ) |
| 143 | 129 138 142 | 3bitr4d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( y < ( ( ( A X. { B } ) oF x. F ) ` z ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 144 | 125 127 143 | 3bitr2d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 145 | 144 | anassrs | |- ( ( ( ( ph /\ 0 < B ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) <-> ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) |
| 146 | 145 | pm5.32da | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 147 | 62 | ad2antrr | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( A X. { B } ) oF x. F ) Fn A ) |
| 148 | 147 64 | syl | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( y (,) +oo ) ) ) ) |
| 149 | 66 | ad2antrr | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> F Fn A ) |
| 150 | 149 97 | syl | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' F " ( ( y / B ) (,) +oo ) ) <-> ( z e. A /\ ( F ` z ) e. ( ( y / B ) (,) +oo ) ) ) ) |
| 151 | 146 148 150 | 3bitr4d | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) <-> z e. ( `' F " ( ( y / B ) (,) +oo ) ) ) ) |
| 152 | 151 | eqrdv | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) = ( `' F " ( ( y / B ) (,) +oo ) ) ) |
| 153 | 102 | ad2antrr | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' F " ( ( y / B ) (,) +oo ) ) e. dom vol ) |
| 154 | 152 153 | eqeltrd | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( y (,) +oo ) ) e. dom vol ) |
| 155 | 124 76 | syl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 156 | 126 | biantrurd | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. RR /\ ( ( ( A X. { B } ) oF x. F ) ` z ) < y ) ) ) |
| 157 | ltmuldiv2 | |- ( ( ( F ` z ) e. RR /\ y e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. ( F ` z ) ) < y <-> ( F ` z ) < ( y / B ) ) ) |
|
| 158 | 128 123 134 135 157 | syl112anc | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( B x. ( F ` z ) ) < y <-> ( F ` z ) < ( y / B ) ) ) |
| 159 | 132 | breq1d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( B x. ( F ` z ) ) < y ) ) |
| 160 | 141 56 | syl | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( ( F ` z ) e. RR /\ ( F ` z ) < ( y / B ) ) ) ) |
| 161 | 128 160 | mpbirand | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( F ` z ) e. ( -oo (,) ( y / B ) ) <-> ( F ` z ) < ( y / B ) ) ) |
| 162 | 158 159 161 | 3bitr4d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) < y <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 163 | 155 156 162 | 3bitr2d | |- ( ( ( ph /\ 0 < B ) /\ ( y e. RR /\ z e. A ) ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 164 | 163 | anassrs | |- ( ( ( ( ph /\ 0 < B ) /\ y e. RR ) /\ z e. A ) -> ( ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) <-> ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) |
| 165 | 164 | pm5.32da | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 166 | 147 95 | syl | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> ( z e. A /\ ( ( ( A X. { B } ) oF x. F ) ` z ) e. ( -oo (,) y ) ) ) ) |
| 167 | 149 68 | syl | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' F " ( -oo (,) ( y / B ) ) ) <-> ( z e. A /\ ( F ` z ) e. ( -oo (,) ( y / B ) ) ) ) ) |
| 168 | 165 166 167 | 3bitr4d | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( z e. ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) <-> z e. ( `' F " ( -oo (,) ( y / B ) ) ) ) ) |
| 169 | 168 | eqrdv | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) = ( `' F " ( -oo (,) ( y / B ) ) ) ) |
| 170 | 73 | ad2antrr | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' F " ( -oo (,) ( y / B ) ) ) e. dom vol ) |
| 171 | 169 170 | eqeltrd | |- ( ( ( ph /\ 0 < B ) /\ y e. RR ) -> ( `' ( ( A X. { B } ) oF x. F ) " ( -oo (,) y ) ) e. dom vol ) |
| 172 | 121 122 154 171 | ismbf2d | |- ( ( ph /\ 0 < B ) -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |
| 173 | 0re | |- 0 e. RR |
|
| 174 | lttri4 | |- ( ( B e. RR /\ 0 e. RR ) -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
|
| 175 | 2 173 174 | sylancl | |- ( ph -> ( B < 0 \/ B = 0 \/ 0 < B ) ) |
| 176 | 105 120 172 175 | mpjao3dan | |- ( ph -> ( ( A X. { B } ) oF x. F ) e. MblFn ) |