This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 2 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 3 | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
| 5 | fimacnv | ⊢ ( ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ → ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) = dom 𝐹 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) = dom 𝐹 ) |
| 7 | imaeq2 | ⊢ ( 𝑥 = ℝ → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = ℝ → ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) ∈ dom vol ) ) |
| 9 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 10 | simpl | ⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) → ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) | |
| 11 | 10 | ralimi | ⊢ ( ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 12 | 9 11 | simplbiim | ⊢ ( 𝐹 ∈ MblFn → ∀ 𝑥 ∈ ran (,) ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 13 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 14 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 15 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 16 | 14 15 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 17 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 18 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 19 | fnovrn | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ (,) +∞ ) ∈ ran (,) ) | |
| 20 | 16 17 18 19 | mp3an | ⊢ ( -∞ (,) +∞ ) ∈ ran (,) |
| 21 | 13 20 | eqeltrri | ⊢ ℝ ∈ ran (,) |
| 22 | 21 | a1i | ⊢ ( 𝐹 ∈ MblFn → ℝ ∈ ran (,) ) |
| 23 | 8 12 22 | rspcdva | ⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ℝ ) ∈ dom vol ) |
| 24 | 6 23 | eqeltrrd | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) |