This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mul02 . Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul02lem2 | ⊢ ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 | ⊢ 1 ≠ 0 | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | mul02lem1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) ∧ 1 ∈ ℂ ) → 1 = ( 1 + 1 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → 1 = ( 1 + 1 ) ) |
| 5 | 4 | eqcomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( 1 + 1 ) = 1 ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( ( i · i ) + ( 1 + 1 ) ) = ( ( i · i ) + 1 ) ) |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | 7 7 | mulcli | ⊢ ( i · i ) ∈ ℂ |
| 9 | 8 2 2 | addassi | ⊢ ( ( ( i · i ) + 1 ) + 1 ) = ( ( i · i ) + ( 1 + 1 ) ) |
| 10 | ax-i2m1 | ⊢ ( ( i · i ) + 1 ) = 0 | |
| 11 | 10 | oveq1i | ⊢ ( ( ( i · i ) + 1 ) + 1 ) = ( 0 + 1 ) |
| 12 | 9 11 | eqtr3i | ⊢ ( ( i · i ) + ( 1 + 1 ) ) = ( 0 + 1 ) |
| 13 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 14 | 10 13 | eqtr4i | ⊢ ( ( i · i ) + 1 ) = ( 0 + 0 ) |
| 15 | 6 12 14 | 3eqtr3g | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → ( 0 + 1 ) = ( 0 + 0 ) ) |
| 16 | 1re | ⊢ 1 ∈ ℝ | |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | readdcan | ⊢ ( ( 1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) ) | |
| 19 | 16 17 17 18 | mp3an | ⊢ ( ( 0 + 1 ) = ( 0 + 0 ) ↔ 1 = 0 ) |
| 20 | 15 19 | sylib | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 0 · 𝐴 ) ≠ 0 ) → 1 = 0 ) |
| 21 | 20 | ex | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 · 𝐴 ) ≠ 0 → 1 = 0 ) ) |
| 22 | 21 | necon1d | ⊢ ( 𝐴 ∈ ℝ → ( 1 ≠ 0 → ( 0 · 𝐴 ) = 0 ) ) |
| 23 | 1 22 | mpi | ⊢ ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 ) |