This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| caofid0.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| caofid1.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| caofid2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐵 𝑅 𝑥 ) = 𝐶 ) | ||
| Assertion | caofid2 | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 𝐹 ) = ( 𝐴 × { 𝐶 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | caofref.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 3 | caofid0.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 4 | caofid1.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 5 | caofid2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐵 𝑅 𝑥 ) = 𝐶 ) | |
| 6 | fnconstg | ⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) Fn 𝐴 ) |
| 8 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 9 | fnconstg | ⊢ ( 𝐶 ∈ 𝑋 → ( 𝐴 × { 𝐶 } ) Fn 𝐴 ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( 𝐴 × { 𝐶 } ) Fn 𝐴 ) |
| 11 | fvconst2g | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑤 ) = 𝐵 ) | |
| 12 | 3 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐵 } ) ‘ 𝑤 ) = 𝐵 ) |
| 13 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 14 | 5 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝐵 𝑅 𝑥 ) = 𝐶 ) |
| 15 | 2 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) |
| 16 | oveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( 𝐵 𝑅 𝑥 ) = ( 𝐵 𝑅 ( 𝐹 ‘ 𝑤 ) ) ) | |
| 17 | 16 | eqeq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐵 𝑅 𝑥 ) = 𝐶 ↔ ( 𝐵 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐶 ) ) |
| 18 | 17 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑆 ( 𝐵 𝑅 𝑥 ) = 𝐶 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑆 ) → ( 𝐵 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐶 ) |
| 19 | 14 15 18 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 𝑅 ( 𝐹 ‘ 𝑤 ) ) = 𝐶 ) |
| 20 | fvconst2g | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐶 } ) ‘ 𝑤 ) = 𝐶 ) | |
| 21 | 4 20 | sylan | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐴 × { 𝐶 } ) ‘ 𝑤 ) = 𝐶 ) |
| 22 | 19 21 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐵 𝑅 ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝐴 × { 𝐶 } ) ‘ 𝑤 ) ) |
| 23 | 1 7 8 10 12 13 22 | offveq | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f 𝑅 𝐹 ) = ( 𝐴 × { 𝐶 } ) ) |