This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by a constant preserves measurability. (Contributed by Mario Carneiro, 15-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfmulc2re.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfmulc2re.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| mbfmulc2re.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| Assertion | mbfmulc2re | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfmulc2re.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfmulc2re.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | mbfmulc2re.3 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 4 | 3 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 5 | 1 | dmexd | ⊢ ( 𝜑 → dom 𝐹 ∈ V ) |
| 6 | 4 5 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 8 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 9 | fconstmpt | ⊢ ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( 𝐴 × { 𝐵 } ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
| 11 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 12 | 6 7 8 10 11 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 13 | 7 8 | remul2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐵 · ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 14 | 13 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 15 | 8 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 16 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 17 | 6 7 15 10 16 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 18 | 14 17 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 19 | 11 1 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ) |
| 20 | 8 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) ) |
| 21 | 19 20 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 23 | 15 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : 𝐴 ⟶ ℝ ) |
| 24 | 22 2 23 | mbfmulc2lem | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 25 | 18 24 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 26 | 7 8 | immul2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝐵 · ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 27 | 26 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 28 | 8 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 29 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 30 | 6 7 28 10 29 | offval2 | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 31 | 27 30 | eqtr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 32 | 21 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 33 | 28 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) : 𝐴 ⟶ ℝ ) |
| 34 | 32 2 33 | mbfmulc2lem | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 35 | 31 34 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) |
| 36 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 38 | 37 8 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 39 | 38 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ) ∈ MblFn ) ) ) |
| 40 | 25 35 39 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 · ( 𝐹 ‘ 𝑥 ) ) ) ∈ MblFn ) |
| 41 | 12 40 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝐴 × { 𝐵 } ) ∘f · 𝐹 ) ∈ MblFn ) |