This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: log 2 is less than 2 5 3 / 3 6 5 . If written in decimal, this is because log 2 = 0.693147... is less than 253/365 = 0.693151... , so this is a very tight bound, at five decimal places. (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | log2ub | ⊢ ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4m1e3 | ⊢ ( 4 − 1 ) = 3 | |
| 2 | 1 | oveq2i | ⊢ ( 0 ... ( 4 − 1 ) ) = ( 0 ... 3 ) |
| 3 | 2 | sumeq1i | ⊢ Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) |
| 4 | 3 | oveq2i | ⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) = ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) |
| 5 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 6 | log2tlbnd | ⊢ ( 4 ∈ ℕ0 → ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... ( 4 − 1 ) ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
| 8 | 4 7 | eqeltrri | ⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | 3re | ⊢ 3 ∈ ℝ | |
| 11 | 4nn | ⊢ 4 ∈ ℕ | |
| 12 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 13 | 1nn | ⊢ 1 ∈ ℕ | |
| 14 | 12 5 13 | numnncl | ⊢ ( ( 2 · 4 ) + 1 ) ∈ ℕ |
| 15 | 11 14 | nnmulcli | ⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) ∈ ℕ |
| 16 | 9nn | ⊢ 9 ∈ ℕ | |
| 17 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 4 ∈ ℕ0 ) → ( 9 ↑ 4 ) ∈ ℕ ) | |
| 18 | 16 5 17 | mp2an | ⊢ ( 9 ↑ 4 ) ∈ ℕ |
| 19 | 15 18 | nnmulcli | ⊢ ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ∈ ℕ |
| 20 | nndivre | ⊢ ( ( 3 ∈ ℝ ∧ ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ∈ ℕ ) → ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ∈ ℝ ) | |
| 21 | 10 19 20 | mp2an | ⊢ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ∈ ℝ |
| 22 | 9 21 | elicc2i | ⊢ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ( 0 [,] ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ↔ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∧ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) |
| 23 | 8 22 | mpbi | ⊢ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ∧ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
| 24 | 23 | simp3i | ⊢ ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) |
| 25 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 26 | relogcl | ⊢ ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ ) | |
| 27 | 25 26 | ax-mp | ⊢ ( log ‘ 2 ) ∈ ℝ |
| 28 | fzfid | ⊢ ( ⊤ → ( 0 ... 3 ) ∈ Fin ) | |
| 29 | 2re | ⊢ 2 ∈ ℝ | |
| 30 | 3nn | ⊢ 3 ∈ ℕ | |
| 31 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... 3 ) → 𝑛 ∈ ℕ0 ) | |
| 32 | 31 | adantl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → 𝑛 ∈ ℕ0 ) |
| 33 | nn0mulcl | ⊢ ( ( 2 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) → ( 2 · 𝑛 ) ∈ ℕ0 ) | |
| 34 | 12 32 33 | sylancr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 35 | nn0p1nn | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) | |
| 36 | 34 35 | syl | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) |
| 37 | nnmulcl | ⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℕ ) → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℕ ) | |
| 38 | 30 36 37 | sylancr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) ∈ ℕ ) |
| 39 | nnexpcl | ⊢ ( ( 9 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 9 ↑ 𝑛 ) ∈ ℕ ) | |
| 40 | 16 32 39 | sylancr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 9 ↑ 𝑛 ) ∈ ℕ ) |
| 41 | 38 40 | nnmulcld | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ∈ ℕ ) |
| 42 | nndivre | ⊢ ( ( 2 ∈ ℝ ∧ ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ∈ ℕ ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) | |
| 43 | 29 41 42 | sylancr | ⊢ ( ( ⊤ ∧ 𝑛 ∈ ( 0 ... 3 ) ) → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 44 | 28 43 | fsumrecl | ⊢ ( ⊤ → Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 45 | 44 | mptru | ⊢ Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ∈ ℝ |
| 46 | 27 45 21 | lesubadd2i | ⊢ ( ( ( log ‘ 2 ) − Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ↔ ( log ‘ 2 ) ≤ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) |
| 47 | 24 46 | mpbi | ⊢ ( log ‘ 2 ) ≤ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) |
| 48 | log2ublem3 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) ≤ ; ; ; ; 5 3 0 5 6 | |
| 49 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 50 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 51 | 50 49 | deccl | ⊢ ; 5 3 ∈ ℕ0 |
| 52 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 53 | 51 52 | deccl | ⊢ ; ; 5 3 0 ∈ ℕ0 |
| 54 | 53 50 | deccl | ⊢ ; ; ; 5 3 0 5 ∈ ℕ0 |
| 55 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 56 | 54 55 | deccl | ⊢ ; ; ; ; 5 3 0 5 6 ∈ ℕ0 |
| 57 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 58 | eqid | ⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) = ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) | |
| 59 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
| 60 | eqid | ⊢ ; ; ; ; 5 3 0 5 6 = ; ; ; ; 5 3 0 5 6 | |
| 61 | 54 55 59 60 | decsuc | ⊢ ( ; ; ; ; 5 3 0 5 6 + 1 ) = ; ; ; ; 5 3 0 5 7 |
| 62 | 5nn | ⊢ 5 ∈ ℕ | |
| 63 | 7nn | ⊢ 7 ∈ ℕ | |
| 64 | 62 63 | nnmulcli | ⊢ ( 5 · 7 ) ∈ ℕ |
| 65 | 64 | nnrei | ⊢ ( 5 · 7 ) ∈ ℝ |
| 66 | 15 | nnrei | ⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) ∈ ℝ |
| 67 | 6nn | ⊢ 6 ∈ ℕ | |
| 68 | 5lt6 | ⊢ 5 < 6 | |
| 69 | 49 50 67 68 | declt | ⊢ ; 3 5 < ; 3 6 |
| 70 | 7cn | ⊢ 7 ∈ ℂ | |
| 71 | 5cn | ⊢ 5 ∈ ℂ | |
| 72 | 7t5e35 | ⊢ ( 7 · 5 ) = ; 3 5 | |
| 73 | 70 71 72 | mulcomli | ⊢ ( 5 · 7 ) = ; 3 5 |
| 74 | 4cn | ⊢ 4 ∈ ℂ | |
| 75 | 2cn | ⊢ 2 ∈ ℂ | |
| 76 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
| 77 | 74 75 76 | mulcomli | ⊢ ( 2 · 4 ) = 8 |
| 78 | 77 | oveq1i | ⊢ ( ( 2 · 4 ) + 1 ) = ( 8 + 1 ) |
| 79 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
| 80 | 78 79 | eqtri | ⊢ ( ( 2 · 4 ) + 1 ) = 9 |
| 81 | 80 | oveq2i | ⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) = ( 4 · 9 ) |
| 82 | 9cn | ⊢ 9 ∈ ℂ | |
| 83 | 9t4e36 | ⊢ ( 9 · 4 ) = ; 3 6 | |
| 84 | 82 74 83 | mulcomli | ⊢ ( 4 · 9 ) = ; 3 6 |
| 85 | 81 84 | eqtri | ⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) = ; 3 6 |
| 86 | 69 73 85 | 3brtr4i | ⊢ ( 5 · 7 ) < ( 4 · ( ( 2 · 4 ) + 1 ) ) |
| 87 | 65 66 86 | ltleii | ⊢ ( 5 · 7 ) ≤ ( 4 · ( ( 2 · 4 ) + 1 ) ) |
| 88 | 18 | nngt0i | ⊢ 0 < ( 9 ↑ 4 ) |
| 89 | 18 | nnrei | ⊢ ( 9 ↑ 4 ) ∈ ℝ |
| 90 | 65 66 89 | lemul2i | ⊢ ( 0 < ( 9 ↑ 4 ) → ( ( 5 · 7 ) ≤ ( 4 · ( ( 2 · 4 ) + 1 ) ) ↔ ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) ≤ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) ) ) |
| 91 | 88 90 | ax-mp | ⊢ ( ( 5 · 7 ) ≤ ( 4 · ( ( 2 · 4 ) + 1 ) ) ↔ ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) ≤ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) ) |
| 92 | 87 91 | mpbi | ⊢ ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) ≤ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
| 93 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
| 94 | nnexpcl | ⊢ ( ( 3 ∈ ℕ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ 7 ) ∈ ℕ ) | |
| 95 | 30 93 94 | mp2an | ⊢ ( 3 ↑ 7 ) ∈ ℕ |
| 96 | 95 | nncni | ⊢ ( 3 ↑ 7 ) ∈ ℂ |
| 97 | 64 | nncni | ⊢ ( 5 · 7 ) ∈ ℂ |
| 98 | 3cn | ⊢ 3 ∈ ℂ | |
| 99 | 96 97 98 | mul32i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 3 ) = ( ( ( 3 ↑ 7 ) · 3 ) · ( 5 · 7 ) ) |
| 100 | 74 75 | mulcomi | ⊢ ( 4 · 2 ) = ( 2 · 4 ) |
| 101 | df-8 | ⊢ 8 = ( 7 + 1 ) | |
| 102 | 76 100 101 | 3eqtr3i | ⊢ ( 2 · 4 ) = ( 7 + 1 ) |
| 103 | 102 | oveq2i | ⊢ ( 3 ↑ ( 2 · 4 ) ) = ( 3 ↑ ( 7 + 1 ) ) |
| 104 | expmul | ⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ) → ( 3 ↑ ( 2 · 4 ) ) = ( ( 3 ↑ 2 ) ↑ 4 ) ) | |
| 105 | 98 12 5 104 | mp3an | ⊢ ( 3 ↑ ( 2 · 4 ) ) = ( ( 3 ↑ 2 ) ↑ 4 ) |
| 106 | 103 105 | eqtr3i | ⊢ ( 3 ↑ ( 7 + 1 ) ) = ( ( 3 ↑ 2 ) ↑ 4 ) |
| 107 | expp1 | ⊢ ( ( 3 ∈ ℂ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ ( 7 + 1 ) ) = ( ( 3 ↑ 7 ) · 3 ) ) | |
| 108 | 98 93 107 | mp2an | ⊢ ( 3 ↑ ( 7 + 1 ) ) = ( ( 3 ↑ 7 ) · 3 ) |
| 109 | sq3 | ⊢ ( 3 ↑ 2 ) = 9 | |
| 110 | 109 | oveq1i | ⊢ ( ( 3 ↑ 2 ) ↑ 4 ) = ( 9 ↑ 4 ) |
| 111 | 106 108 110 | 3eqtr3i | ⊢ ( ( 3 ↑ 7 ) · 3 ) = ( 9 ↑ 4 ) |
| 112 | 111 | oveq1i | ⊢ ( ( ( 3 ↑ 7 ) · 3 ) · ( 5 · 7 ) ) = ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) |
| 113 | 99 112 | eqtri | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 3 ) = ( ( 9 ↑ 4 ) · ( 5 · 7 ) ) |
| 114 | 15 | nncni | ⊢ ( 4 · ( ( 2 · 4 ) + 1 ) ) ∈ ℂ |
| 115 | 18 | nncni | ⊢ ( 9 ↑ 4 ) ∈ ℂ |
| 116 | 114 115 | mulcomi | ⊢ ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) = ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
| 117 | 116 | oveq1i | ⊢ ( ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) · 1 ) = ( ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) · 1 ) |
| 118 | 115 114 | mulcli | ⊢ ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) ∈ ℂ |
| 119 | 118 | mulridi | ⊢ ( ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) · 1 ) = ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
| 120 | 117 119 | eqtri | ⊢ ( ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) · 1 ) = ( ( 9 ↑ 4 ) · ( 4 · ( ( 2 · 4 ) + 1 ) ) ) |
| 121 | 92 113 120 | 3brtr4i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 3 ) ≤ ( ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) · 1 ) |
| 122 | 48 45 49 19 56 57 58 61 121 | log2ublem1 | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) ≤ ; ; ; ; 5 3 0 5 7 |
| 123 | 45 21 | readdcli | ⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ∈ ℝ |
| 124 | 54 93 | deccl | ⊢ ; ; ; ; 5 3 0 5 7 ∈ ℕ0 |
| 125 | 124 | nn0rei | ⊢ ; ; ; ; 5 3 0 5 7 ∈ ℝ |
| 126 | 95 64 | nnmulcli | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ |
| 127 | 126 | nnrei | ⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ |
| 128 | 126 | nngt0i | ⊢ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) |
| 129 | 127 128 | pm3.2i | ⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ ∧ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 130 | lemuldiv2 | ⊢ ( ( ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ∈ ℝ ∧ ; ; ; ; 5 3 0 5 7 ∈ ℝ ∧ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ ∧ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) → ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) ≤ ; ; ; ; 5 3 0 5 7 ↔ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) ) | |
| 131 | 123 125 129 130 | mp3an | ⊢ ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ) ≤ ; ; ; ; 5 3 0 5 7 ↔ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) |
| 132 | 122 131 | mpbi | ⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 133 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 134 | 49 133 | deccl | ⊢ ; 3 8 ∈ ℕ0 |
| 135 | 134 93 | deccl | ⊢ ; ; 3 8 7 ∈ ℕ0 |
| 136 | 135 49 | deccl | ⊢ ; ; ; 3 8 7 3 ∈ ℕ0 |
| 137 | 136 57 | deccl | ⊢ ; ; ; ; 3 8 7 3 1 ∈ ℕ0 |
| 138 | 137 55 | deccl | ⊢ ; ; ; ; ; 3 8 7 3 1 6 ∈ ℕ0 |
| 139 | 137 93 | deccl | ⊢ ; ; ; ; ; 3 8 7 3 1 7 ∈ ℕ0 |
| 140 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 141 | 6lt7 | ⊢ 6 < 7 | |
| 142 | 137 55 63 141 | declt | ⊢ ; ; ; ; ; 3 8 7 3 1 6 < ; ; ; ; ; 3 8 7 3 1 7 |
| 143 | 138 139 57 93 140 142 | decltc | ⊢ ; ; ; ; ; ; 3 8 7 3 1 6 1 < ; ; ; ; ; ; 3 8 7 3 1 7 7 |
| 144 | eqid | ⊢ ; 7 3 = ; 7 3 | |
| 145 | 57 50 | deccl | ⊢ ; 1 5 ∈ ℕ0 |
| 146 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
| 147 | 145 146 | deccl | ⊢ ; ; 1 5 9 ∈ ℕ0 |
| 148 | 147 57 | deccl | ⊢ ; ; ; 1 5 9 1 ∈ ℕ0 |
| 149 | 148 93 | deccl | ⊢ ; ; ; ; 1 5 9 1 7 ∈ ℕ0 |
| 150 | eqid | ⊢ ; ; ; ; 5 3 0 5 7 = ; ; ; ; 5 3 0 5 7 | |
| 151 | eqid | ⊢ ; ; ; ; 1 5 9 1 7 = ; ; ; ; 1 5 9 1 7 | |
| 152 | eqid | ⊢ ; ; ; 5 3 0 5 = ; ; ; 5 3 0 5 | |
| 153 | eqid | ⊢ ; ; ; 1 5 9 1 = ; ; ; 1 5 9 1 | |
| 154 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 155 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
| 156 | 71 154 155 | addcomli | ⊢ ( 1 + 5 ) = 6 |
| 157 | 147 57 50 153 156 | decaddi | ⊢ ( ; ; ; 1 5 9 1 + 5 ) = ; ; ; 1 5 9 6 |
| 158 | 57 55 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
| 159 | eqid | ⊢ ; ; 5 3 0 = ; ; 5 3 0 | |
| 160 | eqid | ⊢ ; ; 1 5 9 = ; ; 1 5 9 | |
| 161 | eqid | ⊢ ; 1 5 = ; 1 5 | |
| 162 | 57 50 155 161 | decsuc | ⊢ ( ; 1 5 + 1 ) = ; 1 6 |
| 163 | 9p4e13 | ⊢ ( 9 + 4 ) = ; 1 3 | |
| 164 | 145 146 5 160 162 49 163 | decaddci | ⊢ ( ; ; 1 5 9 + 4 ) = ; ; 1 6 3 |
| 165 | eqid | ⊢ ; 5 3 = ; 5 3 | |
| 166 | 158 | nn0cni | ⊢ ; 1 6 ∈ ℂ |
| 167 | 166 | addridi | ⊢ ( ; 1 6 + 0 ) = ; 1 6 |
| 168 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 169 | 168 | oveq2i | ⊢ ( ( 5 · 7 ) + ( 1 + 2 ) ) = ( ( 5 · 7 ) + 3 ) |
| 170 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 171 | 49 50 49 73 170 | decaddi | ⊢ ( ( 5 · 7 ) + 3 ) = ; 3 8 |
| 172 | 169 171 | eqtri | ⊢ ( ( 5 · 7 ) + ( 1 + 2 ) ) = ; 3 8 |
| 173 | 7t3e21 | ⊢ ( 7 · 3 ) = ; 2 1 | |
| 174 | 70 98 173 | mulcomli | ⊢ ( 3 · 7 ) = ; 2 1 |
| 175 | 6cn | ⊢ 6 ∈ ℂ | |
| 176 | 175 154 59 | addcomli | ⊢ ( 1 + 6 ) = 7 |
| 177 | 12 57 55 174 176 | decaddi | ⊢ ( ( 3 · 7 ) + 6 ) = ; 2 7 |
| 178 | 50 49 57 55 165 167 93 93 12 172 177 | decmac | ⊢ ( ( ; 5 3 · 7 ) + ( ; 1 6 + 0 ) ) = ; ; 3 8 7 |
| 179 | 70 | mul02i | ⊢ ( 0 · 7 ) = 0 |
| 180 | 179 | oveq1i | ⊢ ( ( 0 · 7 ) + 3 ) = ( 0 + 3 ) |
| 181 | 98 | addlidi | ⊢ ( 0 + 3 ) = 3 |
| 182 | 49 | dec0h | ⊢ 3 = ; 0 3 |
| 183 | 181 182 | eqtri | ⊢ ( 0 + 3 ) = ; 0 3 |
| 184 | 180 183 | eqtri | ⊢ ( ( 0 · 7 ) + 3 ) = ; 0 3 |
| 185 | 51 52 158 49 159 164 93 49 52 178 184 | decmac | ⊢ ( ( ; ; 5 3 0 · 7 ) + ( ; ; 1 5 9 + 4 ) ) = ; ; ; 3 8 7 3 |
| 186 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 187 | 6p5e11 | ⊢ ( 6 + 5 ) = ; 1 1 | |
| 188 | 175 71 187 | addcomli | ⊢ ( 5 + 6 ) = ; 1 1 |
| 189 | 49 50 55 73 186 57 188 | decaddci | ⊢ ( ( 5 · 7 ) + 6 ) = ; 4 1 |
| 190 | 53 50 147 55 152 157 93 57 5 185 189 | decmac | ⊢ ( ( ; ; ; 5 3 0 5 · 7 ) + ( ; ; ; 1 5 9 1 + 5 ) ) = ; ; ; ; 3 8 7 3 1 |
| 191 | 7t7e49 | ⊢ ( 7 · 7 ) = ; 4 9 | |
| 192 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 193 | 9p7e16 | ⊢ ( 9 + 7 ) = ; 1 6 | |
| 194 | 5 146 93 191 192 55 193 | decaddci | ⊢ ( ( 7 · 7 ) + 7 ) = ; 5 6 |
| 195 | 54 93 148 93 150 151 93 55 50 190 194 | decmac | ⊢ ( ( ; ; ; ; 5 3 0 5 7 · 7 ) + ; ; ; ; 1 5 9 1 7 ) = ; ; ; ; ; 3 8 7 3 1 6 |
| 196 | 12 | dec0h | ⊢ 2 = ; 0 2 |
| 197 | 154 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 198 | 57 | dec0h | ⊢ 1 = ; 0 1 |
| 199 | 197 198 | eqtri | ⊢ ( 0 + 1 ) = ; 0 1 |
| 200 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 201 | 52 | dec0h | ⊢ 0 = ; 0 0 |
| 202 | 200 201 | eqtri | ⊢ ( 0 + 0 ) = ; 0 0 |
| 203 | 5t3e15 | ⊢ ( 5 · 3 ) = ; 1 5 | |
| 204 | 203 | oveq1i | ⊢ ( ( 5 · 3 ) + 0 ) = ( ; 1 5 + 0 ) |
| 205 | 145 | nn0cni | ⊢ ; 1 5 ∈ ℂ |
| 206 | 205 | addridi | ⊢ ( ; 1 5 + 0 ) = ; 1 5 |
| 207 | 204 206 | eqtri | ⊢ ( ( 5 · 3 ) + 0 ) = ; 1 5 |
| 208 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 209 | 208 | oveq1i | ⊢ ( ( 3 · 3 ) + 0 ) = ( 9 + 0 ) |
| 210 | 82 | addridi | ⊢ ( 9 + 0 ) = 9 |
| 211 | 209 210 | eqtri | ⊢ ( ( 3 · 3 ) + 0 ) = 9 |
| 212 | 50 49 52 52 165 202 49 207 211 | decma | ⊢ ( ( ; 5 3 · 3 ) + ( 0 + 0 ) ) = ; ; 1 5 9 |
| 213 | 98 | mul02i | ⊢ ( 0 · 3 ) = 0 |
| 214 | 213 | oveq1i | ⊢ ( ( 0 · 3 ) + 1 ) = ( 0 + 1 ) |
| 215 | 214 199 | eqtri | ⊢ ( ( 0 · 3 ) + 1 ) = ; 0 1 |
| 216 | 51 52 52 57 159 199 49 57 52 212 215 | decmac | ⊢ ( ( ; ; 5 3 0 · 3 ) + ( 0 + 1 ) ) = ; ; ; 1 5 9 1 |
| 217 | 5p2e7 | ⊢ ( 5 + 2 ) = 7 | |
| 218 | 57 50 12 203 217 | decaddi | ⊢ ( ( 5 · 3 ) + 2 ) = ; 1 7 |
| 219 | 53 50 52 12 152 196 49 93 57 216 218 | decmac | ⊢ ( ( ; ; ; 5 3 0 5 · 3 ) + 2 ) = ; ; ; ; 1 5 9 1 7 |
| 220 | 49 54 93 150 57 12 219 173 | decmul1c | ⊢ ( ; ; ; ; 5 3 0 5 7 · 3 ) = ; ; ; ; ; 1 5 9 1 7 1 |
| 221 | 124 93 49 144 57 149 195 220 | decmul2c | ⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) = ; ; ; ; ; ; 3 8 7 3 1 6 1 |
| 222 | 50 50 | deccl | ⊢ ; 5 5 ∈ ℕ0 |
| 223 | 222 49 | deccl | ⊢ ; ; 5 5 3 ∈ ℕ0 |
| 224 | 223 49 | deccl | ⊢ ; ; ; 5 5 3 3 ∈ ℕ0 |
| 225 | 224 57 | deccl | ⊢ ; ; ; ; 5 5 3 3 1 ∈ ℕ0 |
| 226 | 12 50 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
| 227 | 226 49 | deccl | ⊢ ; ; 2 5 3 ∈ ℕ0 |
| 228 | 12 57 | deccl | ⊢ ; 2 1 ∈ ℕ0 |
| 229 | 228 133 | deccl | ⊢ ; ; 2 1 8 ∈ ℕ0 |
| 230 | 93 12 | deccl | ⊢ ; 7 2 ∈ ℕ0 |
| 231 | 3t2e6 | ⊢ ( 3 · 2 ) = 6 | |
| 232 | 98 75 231 | mulcomli | ⊢ ( 2 · 3 ) = 6 |
| 233 | 3exp3 | ⊢ ( 3 ↑ 3 ) = ; 2 7 | |
| 234 | 12 93 | deccl | ⊢ ; 2 7 ∈ ℕ0 |
| 235 | eqid | ⊢ ; 2 7 = ; 2 7 | |
| 236 | 57 133 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
| 237 | eqid | ⊢ ; 1 8 = ; 1 8 | |
| 238 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 239 | 238 168 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 1 + 2 ) ) = ( 4 + 3 ) |
| 240 | 4p3e7 | ⊢ ( 4 + 3 ) = 7 | |
| 241 | 239 240 | eqtri | ⊢ ( ( 2 · 2 ) + ( 1 + 2 ) ) = 7 |
| 242 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
| 243 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 244 | 8cn | ⊢ 8 ∈ ℂ | |
| 245 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
| 246 | 244 74 245 | addcomli | ⊢ ( 4 + 8 ) = ; 1 2 |
| 247 | 57 5 133 242 243 12 246 | decaddci | ⊢ ( ( 7 · 2 ) + 8 ) = ; 2 2 |
| 248 | 12 93 57 133 235 237 12 12 12 241 247 | decmac | ⊢ ( ( ; 2 7 · 2 ) + ; 1 8 ) = ; 7 2 |
| 249 | 70 75 242 | mulcomli | ⊢ ( 2 · 7 ) = ; 1 4 |
| 250 | 4p4e8 | ⊢ ( 4 + 4 ) = 8 | |
| 251 | 57 5 5 249 250 | decaddi | ⊢ ( ( 2 · 7 ) + 4 ) = ; 1 8 |
| 252 | 93 12 93 235 146 5 251 191 | decmul1c | ⊢ ( ; 2 7 · 7 ) = ; ; 1 8 9 |
| 253 | 234 12 93 235 146 236 248 252 | decmul2c | ⊢ ( ; 2 7 · ; 2 7 ) = ; ; 7 2 9 |
| 254 | 49 49 232 233 253 | numexp2x | ⊢ ( 3 ↑ 6 ) = ; ; 7 2 9 |
| 255 | eqid | ⊢ ; 7 2 = ; 7 2 | |
| 256 | 232 | oveq1i | ⊢ ( ( 2 · 3 ) + 2 ) = ( 6 + 2 ) |
| 257 | 6p2e8 | ⊢ ( 6 + 2 ) = 8 | |
| 258 | 256 257 | eqtri | ⊢ ( ( 2 · 3 ) + 2 ) = 8 |
| 259 | 93 12 12 255 49 173 258 | decrmanc | ⊢ ( ( ; 7 2 · 3 ) + 2 ) = ; ; 2 1 8 |
| 260 | 9t3e27 | ⊢ ( 9 · 3 ) = ; 2 7 | |
| 261 | 49 230 146 254 93 12 259 260 | decmul1c | ⊢ ( ( 3 ↑ 6 ) · 3 ) = ; ; ; 2 1 8 7 |
| 262 | 49 55 59 261 | numexpp1 | ⊢ ( 3 ↑ 7 ) = ; ; ; 2 1 8 7 |
| 263 | 57 93 | deccl | ⊢ ; 1 7 ∈ ℕ0 |
| 264 | 263 93 | deccl | ⊢ ; ; 1 7 7 ∈ ℕ0 |
| 265 | eqid | ⊢ ; ; 2 1 8 = ; ; 2 1 8 | |
| 266 | eqid | ⊢ ; ; 1 7 7 = ; ; 1 7 7 | |
| 267 | 12 52 | deccl | ⊢ ; 2 0 ∈ ℕ0 |
| 268 | 267 49 | deccl | ⊢ ; ; 2 0 3 ∈ ℕ0 |
| 269 | 12 12 | deccl | ⊢ ; 2 2 ∈ ℕ0 |
| 270 | eqid | ⊢ ; 2 1 = ; 2 1 | |
| 271 | eqid | ⊢ ; 1 7 = ; 1 7 | |
| 272 | eqid | ⊢ ; ; 2 0 3 = ; ; 2 0 3 | |
| 273 | eqid | ⊢ ; 2 0 = ; 2 0 | |
| 274 | 75 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 275 | 154 | addridi | ⊢ ( 1 + 0 ) = 1 |
| 276 | 52 57 12 52 198 273 274 275 | decadd | ⊢ ( 1 + ; 2 0 ) = ; 2 1 |
| 277 | 12 57 243 276 | decsuc | ⊢ ( ( 1 + ; 2 0 ) + 1 ) = ; 2 2 |
| 278 | 7p3e10 | ⊢ ( 7 + 3 ) = ; 1 0 | |
| 279 | 57 93 267 49 271 272 277 278 | decaddc2 | ⊢ ( ; 1 7 + ; ; 2 0 3 ) = ; ; 2 2 0 |
| 280 | eqid | ⊢ ; ; 2 5 3 = ; ; 2 5 3 | |
| 281 | eqid | ⊢ ; 2 2 = ; 2 2 | |
| 282 | eqid | ⊢ ; 2 5 = ; 2 5 | |
| 283 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 284 | 71 75 217 | addcomli | ⊢ ( 2 + 5 ) = 7 |
| 285 | 12 12 12 50 281 282 283 284 | decadd | ⊢ ( ; 2 2 + ; 2 5 ) = ; 4 7 |
| 286 | 50 | dec0h | ⊢ 5 = ; 0 5 |
| 287 | 192 286 | eqtri | ⊢ ( 4 + 1 ) = ; 0 5 |
| 288 | 238 197 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
| 289 | 288 192 | eqtri | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
| 290 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 291 | 71 | addlidi | ⊢ ( 0 + 5 ) = 5 |
| 292 | 57 52 50 290 291 | decaddi | ⊢ ( ( 5 · 2 ) + 5 ) = ; 1 5 |
| 293 | 12 50 52 50 282 287 12 50 57 289 292 | decmac | ⊢ ( ( ; 2 5 · 2 ) + ( 4 + 1 ) ) = ; 5 5 |
| 294 | 231 | oveq1i | ⊢ ( ( 3 · 2 ) + 7 ) = ( 6 + 7 ) |
| 295 | 7p6e13 | ⊢ ( 7 + 6 ) = ; 1 3 | |
| 296 | 70 175 295 | addcomli | ⊢ ( 6 + 7 ) = ; 1 3 |
| 297 | 294 296 | eqtri | ⊢ ( ( 3 · 2 ) + 7 ) = ; 1 3 |
| 298 | 226 49 5 93 280 285 12 49 57 293 297 | decmac | ⊢ ( ( ; ; 2 5 3 · 2 ) + ( ; 2 2 + ; 2 5 ) ) = ; ; 5 5 3 |
| 299 | 227 | nn0cni | ⊢ ; ; 2 5 3 ∈ ℂ |
| 300 | 299 | mulridi | ⊢ ( ; ; 2 5 3 · 1 ) = ; ; 2 5 3 |
| 301 | 300 | oveq1i | ⊢ ( ( ; ; 2 5 3 · 1 ) + 0 ) = ( ; ; 2 5 3 + 0 ) |
| 302 | 299 | addridi | ⊢ ( ; ; 2 5 3 + 0 ) = ; ; 2 5 3 |
| 303 | 301 302 | eqtri | ⊢ ( ( ; ; 2 5 3 · 1 ) + 0 ) = ; ; 2 5 3 |
| 304 | 12 57 269 52 270 279 227 49 226 298 303 | decma2c | ⊢ ( ( ; ; 2 5 3 · ; 2 1 ) + ( ; 1 7 + ; ; 2 0 3 ) ) = ; ; ; 5 5 3 3 |
| 305 | 93 | dec0h | ⊢ 7 = ; 0 7 |
| 306 | 74 | addlidi | ⊢ ( 0 + 4 ) = 4 |
| 307 | 306 | oveq2i | ⊢ ( ( 2 · 8 ) + ( 0 + 4 ) ) = ( ( 2 · 8 ) + 4 ) |
| 308 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
| 309 | 244 75 308 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
| 310 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
| 311 | 57 55 5 309 243 310 | decaddci2 | ⊢ ( ( 2 · 8 ) + 4 ) = ; 2 0 |
| 312 | 307 311 | eqtri | ⊢ ( ( 2 · 8 ) + ( 0 + 4 ) ) = ; 2 0 |
| 313 | 8t5e40 | ⊢ ( 8 · 5 ) = ; 4 0 | |
| 314 | 244 71 313 | mulcomli | ⊢ ( 5 · 8 ) = ; 4 0 |
| 315 | 5 52 49 314 181 | decaddi | ⊢ ( ( 5 · 8 ) + 3 ) = ; 4 3 |
| 316 | 12 50 52 49 282 183 133 49 5 312 315 | decmac | ⊢ ( ( ; 2 5 · 8 ) + ( 0 + 3 ) ) = ; ; 2 0 3 |
| 317 | 8t3e24 | ⊢ ( 8 · 3 ) = ; 2 4 | |
| 318 | 244 98 317 | mulcomli | ⊢ ( 3 · 8 ) = ; 2 4 |
| 319 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 320 | 7p4e11 | ⊢ ( 7 + 4 ) = ; 1 1 | |
| 321 | 70 74 320 | addcomli | ⊢ ( 4 + 7 ) = ; 1 1 |
| 322 | 12 5 93 318 319 57 321 | decaddci | ⊢ ( ( 3 · 8 ) + 7 ) = ; 3 1 |
| 323 | 226 49 52 93 280 305 133 57 49 316 322 | decmac | ⊢ ( ( ; ; 2 5 3 · 8 ) + 7 ) = ; ; ; 2 0 3 1 |
| 324 | 228 133 263 93 265 266 227 57 268 304 323 | decma2c | ⊢ ( ( ; ; 2 5 3 · ; ; 2 1 8 ) + ; ; 1 7 7 ) = ; ; ; ; 5 5 3 3 1 |
| 325 | 57 5 49 249 240 | decaddi | ⊢ ( ( 2 · 7 ) + 3 ) = ; 1 7 |
| 326 | 49 50 12 73 217 | decaddi | ⊢ ( ( 5 · 7 ) + 2 ) = ; 3 7 |
| 327 | 12 50 12 282 93 93 49 325 326 | decrmac | ⊢ ( ( ; 2 5 · 7 ) + 2 ) = ; ; 1 7 7 |
| 328 | 93 226 49 280 57 12 327 174 | decmul1c | ⊢ ( ; ; 2 5 3 · 7 ) = ; ; ; 1 7 7 1 |
| 329 | 227 229 93 262 57 264 324 328 | decmul2c | ⊢ ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) = ; ; ; ; ; 5 5 3 3 1 1 |
| 330 | eqid | ⊢ ; ; ; ; 5 5 3 3 1 = ; ; ; ; 5 5 3 3 1 | |
| 331 | eqid | ⊢ ; ; ; 5 5 3 3 = ; ; ; 5 5 3 3 | |
| 332 | eqid | ⊢ ; ; 5 5 3 = ; ; 5 5 3 | |
| 333 | eqid | ⊢ ; 5 5 = ; 5 5 | |
| 334 | 274 196 | eqtri | ⊢ ( 0 + 2 ) = ; 0 2 |
| 335 | 181 | oveq2i | ⊢ ( ( 5 · 7 ) + ( 0 + 3 ) ) = ( ( 5 · 7 ) + 3 ) |
| 336 | 335 171 | eqtri | ⊢ ( ( 5 · 7 ) + ( 0 + 3 ) ) = ; 3 8 |
| 337 | 50 50 52 12 333 334 93 93 49 336 326 | decmac | ⊢ ( ( ; 5 5 · 7 ) + ( 0 + 2 ) ) = ; ; 3 8 7 |
| 338 | 12 57 12 174 168 | decaddi | ⊢ ( ( 3 · 7 ) + 2 ) = ; 2 3 |
| 339 | 222 49 52 12 332 196 93 49 12 337 338 | decmac | ⊢ ( ( ; ; 5 5 3 · 7 ) + 2 ) = ; ; ; 3 8 7 3 |
| 340 | 93 223 49 331 57 12 339 174 | decmul1c | ⊢ ( ; ; ; 5 5 3 3 · 7 ) = ; ; ; ; 3 8 7 3 1 |
| 341 | 70 | mullidi | ⊢ ( 1 · 7 ) = 7 |
| 342 | 93 224 57 330 340 341 | decmul1 | ⊢ ( ; ; ; ; 5 5 3 3 1 · 7 ) = ; ; ; ; ; 3 8 7 3 1 7 |
| 343 | 93 225 57 329 342 341 | decmul1 | ⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) = ; ; ; ; ; ; 3 8 7 3 1 7 7 |
| 344 | 143 221 343 | 3brtr4i | ⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) < ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) |
| 345 | 93 49 | deccl | ⊢ ; 7 3 ∈ ℕ0 |
| 346 | 124 345 | nn0mulcli | ⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) ∈ ℕ0 |
| 347 | 346 | nn0rei | ⊢ ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) ∈ ℝ |
| 348 | 49 93 | nn0expcli | ⊢ ( 3 ↑ 7 ) ∈ ℕ0 |
| 349 | 227 348 | nn0mulcli | ⊢ ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) ∈ ℕ0 |
| 350 | 349 93 | nn0mulcli | ⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) ∈ ℕ0 |
| 351 | 350 | nn0rei | ⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) ∈ ℝ |
| 352 | 62 | nnrei | ⊢ 5 ∈ ℝ |
| 353 | 62 | nngt0i | ⊢ 0 < 5 |
| 354 | 347 351 352 353 | ltmul1ii | ⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) < ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) ↔ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) < ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) ) |
| 355 | 344 354 | mpbi | ⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) < ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) |
| 356 | 124 | nn0cni | ⊢ ; ; ; ; 5 3 0 5 7 ∈ ℂ |
| 357 | 345 | nn0cni | ⊢ ; 7 3 ∈ ℂ |
| 358 | 356 357 71 | mulassi | ⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) = ( ; ; ; ; 5 3 0 5 7 · ( ; 7 3 · 5 ) ) |
| 359 | 49 50 155 72 | decsuc | ⊢ ( ( 7 · 5 ) + 1 ) = ; 3 6 |
| 360 | 71 98 203 | mulcomli | ⊢ ( 3 · 5 ) = ; 1 5 |
| 361 | 50 93 49 144 50 57 359 360 | decmul1c | ⊢ ( ; 7 3 · 5 ) = ; ; 3 6 5 |
| 362 | 361 | oveq2i | ⊢ ( ; ; ; ; 5 3 0 5 7 · ( ; 7 3 · 5 ) ) = ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) |
| 363 | 358 362 | eqtri | ⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; 7 3 ) · 5 ) = ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) |
| 364 | 299 96 | mulcli | ⊢ ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) ∈ ℂ |
| 365 | 364 70 71 | mulassi | ⊢ ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) = ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 7 · 5 ) ) |
| 366 | 70 71 | mulcomi | ⊢ ( 7 · 5 ) = ( 5 · 7 ) |
| 367 | 366 | oveq2i | ⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 7 · 5 ) ) = ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 5 · 7 ) ) |
| 368 | 299 96 97 | mulassi | ⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 5 · 7 ) ) = ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 369 | 367 368 | eqtri | ⊢ ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · ( 7 · 5 ) ) = ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 370 | 365 369 | eqtri | ⊢ ( ( ( ; ; 2 5 3 · ( 3 ↑ 7 ) ) · 7 ) · 5 ) = ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 371 | 355 363 370 | 3brtr3i | ⊢ ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) < ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) |
| 372 | 49 55 | deccl | ⊢ ; 3 6 ∈ ℕ0 |
| 373 | 372 62 | decnncl | ⊢ ; ; 3 6 5 ∈ ℕ |
| 374 | 373 | nnrei | ⊢ ; ; 3 6 5 ∈ ℝ |
| 375 | 373 | nngt0i | ⊢ 0 < ; ; 3 6 5 |
| 376 | 374 375 | pm3.2i | ⊢ ( ; ; 3 6 5 ∈ ℝ ∧ 0 < ; ; 3 6 5 ) |
| 377 | 227 | nn0rei | ⊢ ; ; 2 5 3 ∈ ℝ |
| 378 | lt2mul2div | ⊢ ( ( ( ; ; ; ; 5 3 0 5 7 ∈ ℝ ∧ ( ; ; 3 6 5 ∈ ℝ ∧ 0 < ; ; 3 6 5 ) ) ∧ ( ; ; 2 5 3 ∈ ℝ ∧ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ ∧ 0 < ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ) ) → ( ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) < ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ↔ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) ) | |
| 379 | 125 376 377 129 378 | mp4an | ⊢ ( ( ; ; ; ; 5 3 0 5 7 · ; ; 3 6 5 ) < ( ; ; 2 5 3 · ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ↔ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) |
| 380 | 371 379 | mpbi | ⊢ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
| 381 | nndivre | ⊢ ( ( ; ; ; ; 5 3 0 5 7 ∈ ℝ ∧ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ ) → ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ∈ ℝ ) | |
| 382 | 125 126 381 | mp2an | ⊢ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ∈ ℝ |
| 383 | nndivre | ⊢ ( ( ; ; 2 5 3 ∈ ℝ ∧ ; ; 3 6 5 ∈ ℕ ) → ( ; ; 2 5 3 / ; ; 3 6 5 ) ∈ ℝ ) | |
| 384 | 377 373 383 | mp2an | ⊢ ( ; ; 2 5 3 / ; ; 3 6 5 ) ∈ ℝ |
| 385 | 123 382 384 | lelttri | ⊢ ( ( ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ≤ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) ∧ ( ; ; ; ; 5 3 0 5 7 / ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) → ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) |
| 386 | 132 380 385 | mp2an | ⊢ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |
| 387 | 27 123 384 | lelttri | ⊢ ( ( ( log ‘ 2 ) ≤ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) ∧ ( Σ 𝑛 ∈ ( 0 ... 3 ) ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) + ( 3 / ( ( 4 · ( ( 2 · 4 ) + 1 ) ) · ( 9 ↑ 4 ) ) ) ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) → ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) ) |
| 388 | 47 386 387 | mp2an | ⊢ ( log ‘ 2 ) < ( ; ; 2 5 3 / ; ; 3 6 5 ) |