This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021) (Revised by AV, 6-Sep-2021) Remove hypothesis D e. NN0 . (Revised by Steven Nguyen, 7-Dec-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decmul1.p | ⊢ 𝑃 ∈ ℕ0 | |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 | ||
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 | ||
| decmul1.n | ⊢ 𝑁 = ; 𝐴 𝐵 | ||
| decmul1.c | ⊢ ( 𝐴 · 𝑃 ) = 𝐶 | ||
| decmul1.d | ⊢ ( 𝐵 · 𝑃 ) = 𝐷 | ||
| Assertion | decmul1 | ⊢ ( 𝑁 · 𝑃 ) = ; 𝐶 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decmul1.p | ⊢ 𝑃 ∈ ℕ0 | |
| 2 | decmul1.a | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decmul1.b | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decmul1.n | ⊢ 𝑁 = ; 𝐴 𝐵 | |
| 5 | decmul1.c | ⊢ ( 𝐴 · 𝑃 ) = 𝐶 | |
| 6 | decmul1.d | ⊢ ( 𝐵 · 𝑃 ) = 𝐷 | |
| 7 | 2 3 | deccl | ⊢ ; 𝐴 𝐵 ∈ ℕ0 |
| 8 | 4 7 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
| 9 | 8 1 | num0u | ⊢ ( 𝑁 · 𝑃 ) = ( ( 𝑁 · 𝑃 ) + 0 ) |
| 10 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 11 | 3 1 | nn0mulcli | ⊢ ( 𝐵 · 𝑃 ) ∈ ℕ0 |
| 12 | 11 | nn0cni | ⊢ ( 𝐵 · 𝑃 ) ∈ ℂ |
| 13 | 12 | addridi | ⊢ ( ( 𝐵 · 𝑃 ) + 0 ) = ( 𝐵 · 𝑃 ) |
| 14 | 13 6 | eqtri | ⊢ ( ( 𝐵 · 𝑃 ) + 0 ) = 𝐷 |
| 15 | 2 3 10 4 1 5 14 | decrmanc | ⊢ ( ( 𝑁 · 𝑃 ) + 0 ) = ; 𝐶 𝐷 |
| 16 | 9 15 | eqtri | ⊢ ( 𝑁 · 𝑃 ) = ; 𝐶 𝐷 |