This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add two numerals M and N (with carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decma.a | ⊢ 𝐴 ∈ ℕ0 | |
| decma.b | ⊢ 𝐵 ∈ ℕ0 | ||
| decma.c | ⊢ 𝐶 ∈ ℕ0 | ||
| decma.d | ⊢ 𝐷 ∈ ℕ0 | ||
| decma.m | ⊢ 𝑀 = ; 𝐴 𝐵 | ||
| decma.n | ⊢ 𝑁 = ; 𝐶 𝐷 | ||
| decaddc.e | ⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐸 | ||
| decaddc2.t | ⊢ ( 𝐵 + 𝐷 ) = ; 1 0 | ||
| Assertion | decaddc2 | ⊢ ( 𝑀 + 𝑁 ) = ; 𝐸 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decma.a | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decma.b | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decma.c | ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decma.d | ⊢ 𝐷 ∈ ℕ0 | |
| 5 | decma.m | ⊢ 𝑀 = ; 𝐴 𝐵 | |
| 6 | decma.n | ⊢ 𝑁 = ; 𝐶 𝐷 | |
| 7 | decaddc.e | ⊢ ( ( 𝐴 + 𝐶 ) + 1 ) = 𝐸 | |
| 8 | decaddc2.t | ⊢ ( 𝐵 + 𝐷 ) = ; 1 0 | |
| 9 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 10 | 1 2 3 4 5 6 7 9 8 | decaddc | ⊢ ( 𝑀 + 𝑁 ) = ; 𝐸 0 |