This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add two numerals M and N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decaddi.1 | ⊢ 𝐴 ∈ ℕ0 | |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 | ||
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 | ||
| decaddi.4 | ⊢ 𝑀 = ; 𝐴 𝐵 | ||
| decaddci.5 | ⊢ ( 𝐴 + 1 ) = 𝐷 | ||
| decaddci.6 | ⊢ 𝐶 ∈ ℕ0 | ||
| decaddci.7 | ⊢ ( 𝐵 + 𝑁 ) = ; 1 𝐶 | ||
| Assertion | decaddci | ⊢ ( 𝑀 + 𝑁 ) = ; 𝐷 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decaddi.3 | ⊢ 𝑁 ∈ ℕ0 | |
| 4 | decaddi.4 | ⊢ 𝑀 = ; 𝐴 𝐵 | |
| 5 | decaddci.5 | ⊢ ( 𝐴 + 1 ) = 𝐷 | |
| 6 | decaddci.6 | ⊢ 𝐶 ∈ ℕ0 | |
| 7 | decaddci.7 | ⊢ ( 𝐵 + 𝑁 ) = ; 1 𝐶 | |
| 8 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 9 | 3 | dec0h | ⊢ 𝑁 = ; 0 𝑁 |
| 10 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 11 | 10 | addridi | ⊢ ( 𝐴 + 0 ) = 𝐴 |
| 12 | 11 | oveq1i | ⊢ ( ( 𝐴 + 0 ) + 1 ) = ( 𝐴 + 1 ) |
| 13 | 12 5 | eqtri | ⊢ ( ( 𝐴 + 0 ) + 1 ) = 𝐷 |
| 14 | 1 2 8 3 4 9 13 6 7 | decaddc | ⊢ ( 𝑀 + 𝑁 ) = ; 𝐷 𝐶 |