This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double an integer power. (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | numexp.1 | ⊢ 𝐴 ∈ ℕ0 | |
| numexpp1.2 | ⊢ 𝑀 ∈ ℕ0 | ||
| numexp2x.3 | ⊢ ( 2 · 𝑀 ) = 𝑁 | ||
| numexp2x.4 | ⊢ ( 𝐴 ↑ 𝑀 ) = 𝐷 | ||
| numexp2x.5 | ⊢ ( 𝐷 · 𝐷 ) = 𝐶 | ||
| Assertion | numexp2x | ⊢ ( 𝐴 ↑ 𝑁 ) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numexp.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | numexpp1.2 | ⊢ 𝑀 ∈ ℕ0 | |
| 3 | numexp2x.3 | ⊢ ( 2 · 𝑀 ) = 𝑁 | |
| 4 | numexp2x.4 | ⊢ ( 𝐴 ↑ 𝑀 ) = 𝐷 | |
| 5 | numexp2x.5 | ⊢ ( 𝐷 · 𝐷 ) = 𝐶 | |
| 6 | 2 | nn0cni | ⊢ 𝑀 ∈ ℂ |
| 7 | 6 | 2timesi | ⊢ ( 2 · 𝑀 ) = ( 𝑀 + 𝑀 ) |
| 8 | 3 7 | eqtr3i | ⊢ 𝑁 = ( 𝑀 + 𝑀 ) |
| 9 | 8 | oveq2i | ⊢ ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) |
| 10 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 11 | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) ) | |
| 12 | 10 2 2 11 | mp3an | ⊢ ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) |
| 13 | 9 12 | eqtri | ⊢ ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) |
| 14 | 4 4 | oveq12i | ⊢ ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) = ( 𝐷 · 𝐷 ) |
| 15 | 14 5 | eqtri | ⊢ ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) = 𝐶 |
| 16 | 13 15 | eqtri | ⊢ ( 𝐴 ↑ 𝑁 ) = 𝐶 |