This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (no carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decma.a | ⊢ 𝐴 ∈ ℕ0 | |
| decma.b | ⊢ 𝐵 ∈ ℕ0 | ||
| decma.c | ⊢ 𝐶 ∈ ℕ0 | ||
| decma.d | ⊢ 𝐷 ∈ ℕ0 | ||
| decma.m | ⊢ 𝑀 = ; 𝐴 𝐵 | ||
| decma.n | ⊢ 𝑁 = ; 𝐶 𝐷 | ||
| decma.p | ⊢ 𝑃 ∈ ℕ0 | ||
| decma.e | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) = 𝐸 | ||
| decma.f | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = 𝐹 | ||
| Assertion | decma | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decma.a | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decma.b | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decma.c | ⊢ 𝐶 ∈ ℕ0 | |
| 4 | decma.d | ⊢ 𝐷 ∈ ℕ0 | |
| 5 | decma.m | ⊢ 𝑀 = ; 𝐴 𝐵 | |
| 6 | decma.n | ⊢ 𝑁 = ; 𝐶 𝐷 | |
| 7 | decma.p | ⊢ 𝑃 ∈ ℕ0 | |
| 8 | decma.e | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐶 ) = 𝐸 | |
| 9 | decma.f | ⊢ ( ( 𝐵 · 𝑃 ) + 𝐷 ) = 𝐹 | |
| 10 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 11 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 12 | 5 11 | eqtri | ⊢ 𝑀 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 13 | dfdec10 | ⊢ ; 𝐶 𝐷 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) | |
| 14 | 6 13 | eqtri | ⊢ 𝑁 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 15 | 10 1 2 3 4 12 14 7 8 9 | numma | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ( ( ; 1 0 · 𝐸 ) + 𝐹 ) |
| 16 | dfdec10 | ⊢ ; 𝐸 𝐹 = ( ( ; 1 0 · 𝐸 ) + 𝐹 ) | |
| 17 | 15 16 | eqtr4i | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |